Site Remediation Program

UST Site/Remedial Investigation Report Certification Form

200		\$		
A. Facility Name: <u>Newark</u> Facility Street Address:	<u>Liberty Internat</u> Hangar 14	ional Airport	Block:5094	Lot(s):01
			Telephone #: 97	73-961-6220
B. Owner (RP)'s Name/ Orga	mization: Port Auth	nority of New York Road	and New JerseyCity:Newark	
C. (Check as appropriate) Site Investigation Report (SIR) \$500 Fee Remedial Investigation Report (RIR) \$1000 Fee	 D. (Complete all that Assigned Case Ma UST Facility ID No Closure Activity No Tank Closure Num Comm. Center Num Case #: 	apply) nager: Gary Greuli umber: 007693 umber: uber:	.ch	e. UCL010001) i.e. N01-0000) 00-00-0000-00)
E. Certification by the Subsu				
Name: Jennifer Nulty Ko	9			
Firm: Hatch Mott MacDo	mald	Firr	n's UST Cert. Number: <u>USO</u>	0089
Firm Address: 27 Bleeker	Street			
City: Millburn		State: NJ	Zip:	07041
Telephone Number: 973-379-	·3400	E-mail Address: jen	nifer.kohlsaat@hatcl	hmott.com
Yes - No(NOTE: Certification numbers re	The attached report	conforms to the specific r	eporting requirements of N I	A C 7:26F
F. Certification by the Respon The following certification shal 1. For a Corporation by a persoresolution, certified as a true 2. For a partnership or sole prop 3. For a municipality, State, fed "I certify under pen application and all the information, I be significant civil per committing a crime	asible Party(ies) of the I I be signed [according to on authorized by a resol copy by the secretary of orietorship, by a general eral or other public agen alty of law that I have pers attached documents, and a believe that the submitted enalties for knowingly su to of the fourth degree if I	Facility: of the requirements of N.J.Z. lution of the board of direction of the board of direction, shall be a partner or the proprietor, becy by either a principal expensive sonally examined and am fanthat based on my inquiry of information is true, accurate bmitting false, inaccurate, make a written false statement.	A.C. 7:14B-1.7(b)]as follows: ectors to sign the document. aubmitted along with the cert	A copy of the ification; or cted Official. itted in this r obtaining at there are that I am
Name (Print or Type):			Title:	
			Telephone # :	
Company Name:			Date:	

The Port Authority of New York and New Jersey
Hangar 14 - Newark International Airport
UST Closure Work Plan and Site Investigation Report

November 2006

Newark International Airport City of Newark, Essex County, New Jersey 223460AA01

UST Closure Work Plan and Site Investigation Report

EXE	CUTIVE SUMMARY	1
1.0 1.1	INTRODUCTION Project Summary/History	2
2.0	PHYSICAL SETTING	4
2.1	Site Description	4
2.2	Surface Water/ Wetlands	5
2.3	Site Geology	
2.4	Topography	
2.5	Hydrogeology	6
3.0	TECHNICAL OVERVIEW	6
3.1		
3.2	Site Investigation Activities	7
3.	.2.1 Start-up Activities	7
	.2.2 Post-Excavation Soil Sampling	8
3.	.2.3 Ground Water Sampling	0
4.0	RESULTS AND CONCLUSIONS 1	1
4.1	Analytical Results of Soil Investigation	
4.2	Results of the Ground Water Investigation	2
5.0	SITE INVESTIGATION SUMMARY 14	4

Figures

Figure 1: Site Location Map

Figure 2: Site Layout

Figure 3: Sampling Locations

Tables

Tables 1A-1F: Soil Analytical Results

Tables 2A-2F: Ground Water Analytical Results

Appendix A: NJDEP Certifications for Subsurface Evaluation

Appendix B: Port Authority Boring Reports, PID Readings and Chain of Custody Records

Appendix C: Monitoring Well Certification Form B

Appendix D: Ground Water Purge Data Sheet

Appendix E: Report of Analysis

Attachment: EDD

EXECUTIVE SUMMARY

Hangar 14 - Newark-Liberty International Airport

Hangar 14 is located at the Newark Liberty International Airport (Airport) in the City of Newark, Essex County, New Jersey. Hangar 14 is owned by the Port Authority of New York and New Jersey (Port Authority) and was formerly operated by United Airlines; United Airlines utilized Hangar 14 to maintain aircrafts and ground service equipment. On April 29 and 30, 2004, the original Oil Water Separator System (OWSS) utilized by Hangar 14 was decommissioned. The OWSS structure was constructed of concrete and included one 550-gallon underground storage tank (UST). The Port Authority was unaware of the UST at the time of the OWSS decommissioning. As such, the Port Authority has subsequently implemented tasks to properly close the UST associated with the OWSS.

The tasks performed as part of the UST closure included both soil and ground water sampling. Specifically, five post excavation soil samples were collected on April 26, 27, and 28, 2006 from the location of the former UST. The soil samples were submitted for laboratory analysis for priority pollutant plus the first 40 non-targeted peaks (PP+40) and total petroleum hydrocarbons (TPHC). Analytical results revealed concentrations of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, above New Jersey's Residential Direct Contact Soil Cleanup Criteria (RDCSCC) standards. Aroclor-1242 and Aroclor-1254 were detected above New Jersey's RDCSCC and Non Residential Direct Contact Soil Cleanup Criteria (NRDCSCC) standards. As ground water was encountered during the April 2006 sampling, the Port Authority implemented a ground water investigation. One ground water monitoring well was installed at the former UST location on April 28, 2006 and sampled on May 16, 2006. Laboratory analysis of ground water samples identified levels of mercury, arsenic, cadmium, chromium, lead, and Aroclor-1242 above New Jersey's Ground Water Quality Criteria (GWQC) standards.

CONCLUSION AND RECOMMENDATIONS

No compounds were detected in the soil above the NRDCSCC other then Aroclor-1242 and Aroclor-1254. No compounds were detected in the ground water above the GWQC other then Aroclor-1242 and metals associated with background conditions. Given the analytical results from the 2006 site investigation, no further investigation is warranted or proposed for the UST. The PCB contamination is being addressed by the Port Authority and United Airlines as a separate issue.

1.0 INTRODUCTION

Hangar 14 is located at the Newark Liberty International Airport (Airport) in the City of Newark, Essex County, New Jersey. Hangar 14 is owned by the Port Authority of New York and New Jersey (Port Authority) and was formerly operated by United Airlines; United Airlines utilized Hangar 14 to maintain aircrafts and ground service equipment. The location of Hangar 14 is depicted on Figure 1, Site Location Map.

Hangar 14 is a 45,000 square foot rectangular structure constructed in 1958 during the original Airport construction. On April 29 and 30, 2004, the original Oil Water Separator System (OWSS), utilized by Hangar 14, was decommissioned by the Port Authority. The OWSS structure was constructed of concrete and included one 550-gallon underground storage tank (UST). The UST was located adjacent to the west of the OWSS. Based on the use of the UST in connection to the OWSS, this 550-gallon UST was required to be registered with the New Jersey Department of Environmental Protection (NJDEP). At the time of the OWSS decommissioning and removal, the Port Authority was unaware of the UST associated with the OWSS. Limited documentation is available with regard to the specifics of the removal of the UST, as the focus of the April 2004 removal effort was the removal and decommissioning of the OWSS.

Given the above, the Port Authority has performed the tasks necessary to close the UST associated with the OWSS. As part of the closure, the Port Authority has investigated the location of the former UST to determine if contamination is present in the surrounding environmental media. Hatch Mott MacDonald (HMM) prepared the UST Closure Work Plan and Site Investigation Report, which included a description of the soil and ground water sampling to investigate the environmental media in the area of the former OWSS's associated UST, as well as the results from the investigative efforts. HMM (NJDEP Certification #US00089) also provided oversight of the site investigation activities conducted by subsurface evaluator Jennifer Nulty Kohlsaat (NJDEP Certification #0011809). Copies of the NJDEP Certification for HMM and Jennifer Nutley Kohlsaat are provided in Appendix A. The UST Closure Plan has been developed and implemented in accordance with the New Jersey <u>Technical Requirements</u>

for Site Remediation (N.J.A.C. 7:26E) and the New Jersey <u>Underground Storage Tank Regulation</u> (N.J.A.C. 7:14B-9.3).

1.1 Project Summary/History

At the onset of the project, HMM reviewed the documentation made available by the Port Authority with regard to the history of Hangar 14. The documentation included a historical summary of work performed at Hangar 14 with respect to the removal of the on-site OWSS and its associated UST in 2004.

Specifically, HMM reviewed two documents: (1) A memorandum prepared by the Port Authority, dated June 10, 2004, regarding the removal of the OWSS and the findings of the removal; and (2) A report prepared by Apex Environmental, Inc. (Apex), dated March 30, 2005, and titled *Characterization Report for Newark Liberty International Airport Hangar 14* prepared for United Airlines. The memorandum provides a brief overview of the removal activities conducted with regard to the OWSS and its associated UST. The March 2005 Apex report documents the use of oil containing PCB's at Hangar 14, the removal of the OWSS, and the additional investigation performed to investigate the extent of PCB contamination including the results of soil sampling conducted during the OWSS removal activity. Since the removal of the OWSS and the identification of PCB contamination during the OWSS removal, the Port Authority and United Airlines are addressing the PCB contamination at Hangar 14 and are complying with applicable regulations related to PCB contamination.

Oil Water Separator System (OWSS) Removal

On April 29 and 30, 2004, the Port Authority performed activities associated with the removal and replacement of the 2,000-gallon OWSS located at Hangar 14; the work was performed under the final phase of Contract Number EWR-154.322, Work Order #18. United Airlines occupied Hangar 14 since its original construction. As part of its occupancy, United Airlines utilized the original OWSS. Conti Enterprises, Inc (Conti) of South Plainfield, New Jersey, was retained by the Port Authority to perform general contractor services related to the OWSS removal. Conti subcontracted the environmental portion of the work order to Eisco-NJ (Eisco) of Port Reading, New Jersey. Conti was responsible for the excavation, earthwork and pavement restoration of the OWSS site. Eisco's responsibilities included cleaning inside the OWSS, removal and containerizing wash water and residual liquids and debris using

a Vactor truck, arrangement for the disposal of all removed residual liquids and debris, and transportation of regulated waste materials from the OWSS to an appropriate disposal facility.

The removal of the OWSS began on April 29, 2004 and was completed on April 30, 2004. The removal operations included the use of a Vactor truck to remove all sludge, debris, and wastewater from the system, and the excavation and removal of the concrete OWSS. Included with the removal of the OWSS was the excavation of an associated 550-gallon UST. The Port Authority had no previous knowledge of the UST associated with the OWSS. The Port Authority representative who was on-site during the UST removal reported, as memorialized in the June 10, 2004 Port Authority memorandum, that no apparent discharges from the UST to the soil or ground water were observed during the removal operations. Pieces from the concrete OWSS were sampled for waste classification purposes. The samples were analyzed for PCBs. Based on the analytical results of less than 1 ppm PCBs, the concrete OWSS was determined to be non-hazardous for PCBs. The waste material collected in the Vactor truck was also sampled for PCBs. Aroclor-1248 was detected in concentrations exceeding 50 ppm. Given the results of the Vactor truck waste sampling, further investigation was required at Hangar 14, thus warranting the Apex 2005 PCB investigation.

2.0 PHYSICAL SETTING

Hangar 14 is located in the northern corner of the Airport in the City of Newark, Essex County, New Jersey. The airport property is bounded by Routes 1 & 9 to the north and west, the New Jersey Turnpike to the east, and Interchange 13A off the New Jersey Turnpike to the south and southwest. The Airport is surrounded by the City of Elizabeth to the southwest, Port Elizabeth and Port Newark to the southeast and east, and the City of Newark to the north and west. The northing and easting coordinates for the center of Hangar 14 are North 681762.62 and East 581654.93, as approximated from the New Jersey Geological Survey (USGS), Elizabeth, 7.5-minute topographic quadrangle.

2.1 Site Description

The Airport property is identified as Block 5094, Lot 1 on the City of Newark tax maps, and is comprised of paved surfaces (roadways, runways and parking lots), buildings and support structures covering approximately 2,200 acres. The portion of the Airport that falls within the County of Essex is

under lease with the City of Newark; the remaining portion is in Union County, and is owned by the Port Authority. Current functions of the structures at the Airport include passenger terminals, maintenance garages, storage areas, aircraft hangars, vehicle and aircraft maintenance facilities, aircraft fuel storage facilities, air cargo areas and ancillary facilities. Hangar 14 is situated approximately 500 feet east of Brewster Road. Directly adjacent to the west and north of Hangar 14 are two hangars/maintenance buildings, which are similar in size to Hangar 14. The area adjacent to Hangar 14 to the east is covered with an impervious surface but contains no structures. To the south of Hangar 14 is the Airport taxiway. The former OWSS was located approximately 90 feet from the northeast corner and approximately 25 feet from the eastern wall of Hangar 14. This area is currently covered with an impervious surface and contains no structures.

2.2 Surface Water/ Wetlands

The Airport property is situated within 500 feet of Port Newark and Port Elizabeth channels. Both channels are southeasterly trending waterways, which are tidally influenced. The channels are connected to the Newark Bay. No surface water bodies or wetlands are located at or adjacent to Hangar 14. The closest bodies of water are the Elizabeth Channel drainage swale located approximately 0.15 miles west of Hangar 14 and Weequahic Lake located approximately 1.2 miles west of Hangar 14.

2.3 Site Geology

The Airport, including Hangar 14, is located in the Piedmont physiographic province, Brunswick Group of the Newark Basin. The New Jersey Geological Survey (NJGS) Bedrock Geology Map of Northern New Jersey identifies the underlying bedrock geology as Passaic formation mudstone, siltstone and shale. The NJGS, GIS database identifies the surficial geology as lake bottom deposits. The overburden material encountered on-site is not native soil, but rather fill material that was imported during the creation of the Airport. This report shall refer to these soils as "original fill" material.

2.4 Topography

The Airport is relatively flat with a slight slope toward the Newark and Elizabeth Channels. The Airport is predominantly covered with concrete or asphalt. The elevation of the site is approximately 10 feet above sea level. All surficial drainage is directed toward storm drains located along the streets

throughout the Airport. The topography at Hangar 14 contains the same conditions as those noted for the Airport.

2.5 Hydrogeology

Ground water was encountered during the original removal of the OWSS at approximately 10-11 feet below surface grade. The ground water flow at the Airport is historically southeast towards the Newark Bay.

3.0 TECHNICAL OVERVIEW

This section represents a summary of the prior environmental/closure activities performed at Hangar 14 in connection with the removal of the OWSS, as well as site investigation activities, which were undertaken by the Port Authority with regard to the former 550-gallon UST, associated with the OWSS. After review of the OWSS closure/removal documentation, the Port Authority concluded that further investigation was required. HMM developed a Site Investigation Work Plan (SIWP) to determine if environmental media has been impacted as a result of the tank in accordance with NJDEP requirements. The activities present in the SIWP included the following: the identification of the Area of Potential Environmental Concern (APEC); performance and sampling of soil borings; the collection of soil samples at, and adjacent to, the former location of the tank, and; laboratory analysis of soil samples. Given the size of the UST, NJDEP procedures require the collection and analysis of four soil samples. Five soil borings were sampled to ensure adequate area coverage. Additionally, the SIWP included a contingency for a ground water evaluation based on site conditions. Ground water was encountered during the OWSS decommission and removal investigation, thus the installation and sampling of one monitoring well was also included in the SIWP.

All sampling, for both soil and ground water, was performed in accordance with the NJDEP Field Sampling Procedures Manual dated August 2005 and the Technical Requirements for Site Remediation N.J.A.C 7:26E. A Site Plan depicting the overall layout of the subject site and sampling locations is provided as Figure 2. Soil and ground water samples were submitted to Hampton-Clark Veritech Laboratories (Hampton-Clark Veritech), a New Jersey certified analytical laboratory in Fairfield, New Jersey (New Jersey Laboratory Certification #14622), and analyzed for PP+40 and TPHC. Analytical

data packages received from the laboratory in association with the sampling event, were reviewed by HMM. The data is summarized in Tables 1A-1F and 2A-2F and presented later in this report.

3.1 Previous Investigative Activities at the Site

As previously stated, information provided related to the OWSS removal activities at Hangar 14 were provided in the Port Authority memorandum, dated June 10, 2004 and the Apex *Characterization Report for Newark Liberty International Airport Hangar 14*, dated March 30, 2005. During the excavation activities conducted by Conti, a 550-gallon UST associated with the OWSS was discovered immediately to the west of the OWSS. Conti removed the tank simultaneously with the removal of the OWSS. The Port Authority was unaware of the UST associated with the OWSS until the OWSS was excavated. Information provided in the Port Authority memorandum noted that no apparent discharges to the soil or ground water were observed during the UST removal operations. Although the memorandum notes no visual discharge from the UST, no additional investigation was conducted to verify the integrity of the UST or to document environmental quality of the soil and ground water surrounding the UST location at the time of excavation. The former UST location was backfilled with certified clean fill material and the UST was cleaned and disposed of by Conti.

3.2 Site Investigation Activities

In accordance with the <u>Technical Requirements for Site Remediation</u> (N.J.A.C. 7:26E), HMM undertook Site Investigation (SI) activities to further investigate the former OWSS UST at Hangar 14. The purpose of the investigative efforts described herein was to adequately characterize the site conditions and to obtain sufficient data regarding the environmental media in the former tank area. All activities conducted at the site in connection to the SI activities were documented in a field book by the onsite HMM personnel.

3.2.1 Start-up Activities

The Port Authority identified the location of the former OWSS on April 25, 2006 using survey coordinates in addition to maps and documentation recorded at the time of the OWSS removal by Port Authority's surveyors and a Port Authority representative. The OWSS location was marked-out by Port Authority representatives for the presence of utilities. The area of the former OWSS was repayed after

UST Closure Work Plan and Site Investigation Report

the removal of the OWSS, therefore, it a drill rig would be utilized to perform the soil borings to obtain the required soil samples. Five soil boring locations were marked out to identify sampling locations.

3.2.2 Post-Excavation Soil Sampling

All soil sampling procedures and requirements were conducted in accordance with the NJDEP <u>Technical</u> <u>Requirements for Site Remediation</u> and the NJDEP <u>Field Sampling Procedures Manual</u>. The soil investigation consisted of the performance and sampling of five soil borings at the former UST area on April 26, 27 and 28, 2006.

The sample locations were logged in a field book along with sampling depth and time of sample collection. The soil samples were collected by a Port Authority representative, using stainless steel trowels and dedicated plastic syringes. Samples were place in 8-ounce glass sample jars with Teflon seals and 2-ounce glass jars with Teflon seals and methanol preservative. A Photo-Ionization Detector (PID) was utilized at all times during soil boring and sampling activity to detect the presence of organic vapors. Any changes above background detected by the PID were recorded in the field book.

Post-excavation samples were transported with proper chain of custody documentation to Hampton-Clark Veritech. All soil samples were analyzed in accordance with the NJDEP's <u>Technical Requirements for Site Remediation</u> document N.J.A.C. 7:26E-2.1(d) within the specified holding times. Hangar 14 sample locations are depicted in Figure 3.

All soil borings were performed through the use of a hallow stem auger drill rig and split spoons. All soil samples were collected below the UST clean fill material. All soil samples were taken from the original fill material (below the UST clean fill material) and were biased to the areas with the highest field screening readings. Because of the composition of the original fill material, which included gravel and cobbles, all soil samples were taken from twelve-inch intervals instead of the regulatory standard six-inch, in order to obtain enough soils for laboratory analysis. Soil samples were collected below ground water if the UST clean fill material/original fill material interface was below the water table.

One soil boring was performed and one soil sample collected on April 26, 2006, from the center of the former UST location's center-line, as identified by the Port Authority mark out. The UST clean fill

UST Closure Work Plan and Site Investigation Report

material/original fill material interface was observed at 12.0 feet at this location. Ground water was encountered at 11.0 feet. This soil sample (SB-1) was collected at 12.0-13.0 feet. A "duplicate" sample was also taken at 12.0-13.0 feet. A PID recorded a reading of 72.5 parts per million (ppm) at 12.0-13.0.

SB-2 was performed three feet south of SB-1 on April 26, 2006. The UST clean fill material/original fill material interface was observed at 10.0 feet at this location. Ground water was encountered at 11.0 feet. One soil sample (SB-2) was collected at 10.0-11.0 feet. A PID reading of 116.0 ppm was recorded for the sample.

SB-3 was performed on April 27, 2006, three feet north of SB-1. The UST clean fill material/original fill material interface was observed at 13.0 feet. Ground water was encountered at 11.0 feet. One soil sample (SB-3) was collected at 13.0-14.0 feet. A PID reading of 0.4 ppm was recorded for the sample. Previously, during the boring, a higher PID reading of 80.7 was recorded at 8.0-10.0 feet. This soil boring location was identified as within UST clean fill material. As such this boring sample was not collected for analysis, as it was located well above the UST clean fill material/original fill material interface.

SB-4 was installed on April 27, 2006, five feet west of SB-1. The UST clean fill material/original fill material interface was observed at 9.0 –10.0 feet. Ground water was not encountered during the boring. One soil sample (SB-4) was collected at 9.0-10.0 feet. A PID reading of 292 ppm was recorded for the sample.

Because ground water was encountered during soil sampling at sample locations SB-1, SB-2 and SB-3, the location of SB-5 was modified. The mark out for SB-5, located five feet east of SB-1, was altered to represent the location of Monitoring Well 1 (MW-1). A soil sample was obtained from the location during the monitoring well installation. MW-1 was started on April 27, 2006 and finished and developed on April 28, 2006. On April 28, 2006, during the installation, one soil sample was obtained at 13.0 to 14.0 feet. A PID reading of 0.0 ppm was recorded for the sample. Further information regarding the monitoring well installation and ground water sampling is summarized in section 3.2.3 of this report.

All five soil samples were submitted to Hampton-Clark Veritech for PP+40 and TPHC analysis. A copy of the Port Authority Boring Reports, PID Readings and Chain of Custody Records are provided in Appendix B of this report. A discussion of the analytical results from the soil sampling is provided in Section 4.0 of this report and a summary provided in Tables 1A-1F of this report.

3.2.3 Ground Water Sampling

Based on current information, the UST was positioned within the saturated zone. Since soil sampling indicated the presence of ground water shallower then the invert of the UST, a ground water sampling event was performed to assess ground water quality. All ground water sampling procedures and requirements were conducted in accordance with the NJDEP <u>Technical Requirements for Site Remediation</u> and the NJDEP <u>Field Sampling Procedures Manual</u> and were documented within the field book.

One monitoring well was installed on April 28, 2006, five feet southeast of the former UST, in a down-gradient location, as identified through topography and available facility information. The monitoring well was installed at the location of the SB-5 boring mark out. The well was installed and constructed in accordance with NJDEP requirements including the use of 4-inch-diameter PVC screen and riser. The total depth of the monitoring well is 18 feet below grade. The well was screened from 6 to 16 feet. The well screen was 0.010-inch slot size. The filter pack was #1 sand. A surface seal of a bentonite-cement grout ensured that stormwater runoff could not enter the well. The well was developed using surging and pumping methods until the discharge was relatively clear.

As per NJDEP requirements, the well was allowed to equilibrate for a period of over two weeks. After allowing for equilibration, two ground water samples (one sample and one duplicate sample) were collected from the well on May 16, 2006 with standard 3-5 volume purging and sampling methods. Ground water chemical parameters, including pH, temperature, oxidation/reduction potential, specific conductance, and dissolved oxygen, were measured and recorded at the beginning, during and end of the purge. Please see Appendix C for a copy of the Monitoring Well Certification Form B Location Certificate and Appendix D for a copy of the ground water purge data sheet. The ground water sample was submitted to a New Jersey certified laboratory, Hampton-Clark Veritech, for PP+40 and TPHC

analysis. A summary of the analytical results from the ground water sampling is provided in Section 4.0 and in Tables 2A-2F of this report.

4.0 RESULTS AND CONCLUSIONS

Based on observations during the OWSS decommissioning, the Port Authority implemented actions to properly investigate and close the UST associated with the OWSS including the collection of post-excavation soil and ground water samples. The Analytical Data is provided under Appendix E of this report. The Electronic Data Deliverables (EDD) is provided as an attachment to Appendix E.

4.1 Analytical Results of Soil Investigation

The soil samples were analyzed for PP+40 and TPHC. Analytical results were compared to NJDEP's soil cleanup criteria standards: RDCSCC, NRDCSCC and IGWSCC. The analytical results from the sampling event are presented below. The results have been presented by contaminant class.

VOLATILE ORGANIC COMPOUNDS

No levels of VOCs were detected above the RDCSCC, NRDCSCC or IGWSCC standards, thus no additional investigation for VOCs is warranted.

BASE NEUTRAL/ACID EXTRACTABLE COMPOUNDS

Review of the soil sampling results indicate elevated levels of three base neutral compounds above the RDCSCC: benzo(b)fluoranthene, benzo(a)pyrene and benzo(a)anthracene. Benzo(b)fluoranthene was detected above the RDCSCC in SB-1DUP at 0.97 mg/kg, in SB-2 at 1.8mg/kg, and in SB-3 at 0.99 mg/kg; Benzo(a)pyrene was detected about the RDCSCC in SB-2 at 1.3mg/kg, and in SB-3 at 0.71 mg/kg; Benzo(a)anthracene was detected about the RDCSCC in SB-2 at 1.8mg/kg. These three base neutral compounds are typical of historic fill. In addition, although the results for these base neutral compounds were detected at concentrations above the RDCSCC standard, all results are below the NRDCSCC standards. Given the presence of historic fill material (original fill material) at the Airport and the Site's non-residential usage, it is appropriate to assign the NRDCSCC to this Site. Further, no compounds were detected above the IGWSCC. As such, no additional investigation or remediation is warranted as to the presence of these compounds.

PRIORITY POLLUTANT METALS

No levels of metals were detected above the RDCSCC, NRDCSCC or IGWSCC standards, thus no additional investigation for metals is warranted.

PCBs

Review of the soil sampling results indicated the presence of two PCBs at concentrations above the RDCSCC and NRDCSCC: Aroclor-1242 and Aroclor-1254. Aroclor-1242 was detected in SB-1 at 6.3 mg/kg, in SB-1DUP at 5.1 mg/kg, in SB-2 at 30 mg/kg, and in SB-4 at 14 mg/kg. Aroclor-1254 was detected in SB-4 at 2.5 mg/kg. The Port Authority and United Airlines are currently addressing the extent of the PCB soil contamination within the area of the former OWSS, thus no further investigation of soils is proposed with regard to the former UST.

PESTICIDES

No levels of pesticides were detected above the RDCSCC, NRDCSCC or IGWSCC standards, thus no additional investigation is warranted.

CYANIDE, TOTAL PHENOLICS

No levels of cyanide or total phenolics were above RDCSCC, NRDCSCC or IGWSCC standards, thus no additional investigation is warranted.

TPHC

The NJDEP has not established a cleanup criteria for TPHC in soil. However, it utilizes a threshold value of 10,000 mg/kg as guidance for total organic contaminants. Review of the soil sampling results indicated TPHC was detected in SB-4 at 13,000 mg/kg. All other results were below the threshold concentration. Given that no individual organic compounds were detected above the corresponding NRDCSCC standards, no further investigation is proposed with regard to TPHC in soil.

4.2 Results of the Ground Water Investigation

Two samples (one sample and one duplicate sample) were collected from the monitoring well during the ground water sampling event. The ground water samples were analyzed for PP+40 and TPHC.

UST Closure Work Plan and Site Investigation Report

Analytical results were compared to New Jersey's GWQC. Results are presented by contaminant class below.

VOCs

No levels of VOCs were detected above the GWQC, thus no additional investigation is warranted.

BNAs

No levels of BNAs were detected above the GWQC, thus no additional investigation is warranted.

METALS

Review of the ground water sampling results indicated levels of five metals above the GWQC. Mercury was detected at 3.8 ug/l and 2.4 ug/l, above its GWQC of 2 ug/l. Arsenic was detected at 37 ug/l and 26 ug/l, above it GWQC of 3 ug/l. Cadmium was detected at 5 ug/L, above its GWQC of 4 ug/l. Chromium was detected at 74 ug/l, above its GWQC of 70 ug/l. Lead was detected at 1200 ug/l and 860 ug/l, above its GWQC of 5 ug/l. These metals are typical of ground water samples from within historic fill, thus the elevated levels of metals identified in the ground water at Hangar 14 are most likely a result of background conditions and historic fill material (original fill material) and not associated with the UST.

PCBs

Analytical results indicated elevated levels of one PCB above the GWQC. Aroclor-1242 was detected in the ground water sample and the duplicate sample at 11ug/L and 13ug/L respectively, which is above the total PCBs QWQC of 0.5 ug/l. The Port Authority and United Airlines are currently addressing the extent of the PCB ground water contamination within the area of the former OWSS, thus no further investigation is proposed with regard to the former UST.

PESTICIDES

No levels of pesticides were detected above the GWQC, thus no additional investigation is warranted.

UST Closure Work Plan and Site Investigation Report

CYANIDE, TOTAL PHENOLICS, TPHC

No levels of cyanide were detected above GWQC, thus no additional investigation is warranted for cyanide. It should be noted that no standards are currently in place in New Jersey for total phenolics or TPHC. However, given that no individual organic compounds were detected above the corresponding GWQC, no further investigation is proposed with regard to TPHC in ground water.

5.0 SITE INVESTIGATION SUMMARY

The OWSS included a 550-gallon UST, which was decommissioned in 2004. Given the analytical results from the 2006 site investigation, no further investigation is warranted or proposed for the UST. The PCB contamination within the soil and ground water is being addressed by the Port Authority and United Airlines as a separate issue.

FIGURES

TABLES

TABLE 1A SOIL ANALYTICAL RESULTS VOLITILE ORGANIC COUMPOUNDS HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

	NJ Soil	NJ Soil	NJ Impact To	CLIENT ID:	H14-	SB-01-	042606S	O06	H14-S	B1DUP	042606S	O06 T	LIAA	CD 00	042606SC	200
Test Parameter	Residential	NonResidential	GW Cleanup	LAB ID:			58-001			AC231	STATE COLORS	-	п 14-			JU6
	Cleanup	Cleanup Criteria	Criteria	COLLECT DATE:			/2006	200		4/26/					58-003 /2006	
Take Distanting	Criteria (mg/Kg	(mg/Kg)	(mg/Kg)		Result	Flg	RL	Units	Result	Fig	RL	Units	Result	Flg		1.1
:TotalVolatileTic 1,1,1,2-Tetrachloroethane				- 1/8°	35.3	J	NA	mg/Kg	38.5	J	NA	mg/Kg	232.2	J	RL NA	Unit
1,1,1-Trichloroethane	170	310	20		ND		0.54	mg/Kg	ND	+ +	0.57	mg/Kg	ND	 	0.59	mg/k
	210	1000 (d)	50		ND		0.54	mg/Kg	ND	1	0.57	mg/Kg	ND	+	0.59	mg/l
1,1,2,2-Tetrachloroethane	34	70 (k)	1		ND		0.54	mg/Kg	ND	1	0.57	mg/Kg	ND	+	0.59	mg/k
1,1,2-Trichloroethane 1,1-Dichloroethane	22	420	1		ND		0.54	mg/Kg	ND	1	0.57	mg/Kg	ND	+	0.59	mg/k
1,1-Dichloroethane	570	1000 (d)	10		ND		0.54	mg/Kg	ND		0.57	mg/Kg	ND		0.59	mg/l
	8	150	10		ND		0.54	mg/Kg	ND	1-	0.57	mg/Kg	ND			mg/l
1,2-Dichloroethane	6	24	1		ND		0.54	mg/Kg	ND	+-+	0.57	mg/Kg	ND ND		0.59	mg/k
1,2-Dichloropropane	10	43	NA NA		ND		0.54	mg/Kg	ND	+	0.57	mg/Kg	ND ND	-	0.59	mg/k
2-Butanone	1000 (d)	1000 (d)	50	- 150 - 150	ND		0.54	mg/Kg	ND	+ +	0.57	mg/Kg	ND	+-	0.59	mg/k
2-Chloroethylvinylether	NA	NA	NA		ND		0.54	mg/Kg	ND	+	0.57			-	0.59	mg/k
2-Hexanone	NA	NA	NA		ND		0.54	mg/Kg	ND	1—	0.57	mg/Kg	ND	-	0.59	mg/k
4-Methyl-2-Pentanone	1000 (d)	1000 (d)	50	7.	ND		0.54	mg/Kg	ND	+ -	0.57	mg/Kg	ND	+ -	0.59	mg/k
Acetone	1000 (d)	1000 (d)	100		ND		2.7	mg/Kg	ND	+		mg/Kg	ND		0.59	mg/k
Acrolein	NA	NA	NA		ND		2.7	mg/Kg	ND ND	-	2.9	mg/Kg	ND	\perp	2.9	mg/k
Acrylonitrile	1	5	1		ND	1	0.54	mg/Kg	ND	-	2.9	mg/Kg	ND	\perp	2.9	mg/k
Benzene	3	13	1		ND		0.11	9 0	ND ND		0.57	mg/Kg	ND	\perp	0.59	mg/k
Bromodichloromethane	11	46			ND		0.11	mg/Kg	1,000,000	+	0.11	mg/Kg	ND		0.12	mg/K
Bromoform	86	370	1		ND			mg/Kg	ND	-	0.57	mg/Kg	ND		0,59	mg/K
Bromomethane	79	1000 (d)	1		ND		0.54	mg/Kg	ND	<u> </u>	0.57	mg/Kg	ND		0.59	mg/K
Carbon disulfide	NA	NA	NA NA		ND	-	0.54	mg/Kg	ND		0.57	mg/Kg	ND		0.59	mg/K
Carbon tetrachloride	2 (k)	4 (k)	1		ND		0.54	mg/Kg	ND		0.57	mg/Kg	ND	\Box	0.59	mg/K
Chlorobenzene	37	680	1				0.54	mg/Kg	ND		0.57	mg/Kg	ND		0.59	mg/K
Chloroethane	NA NA	NA NA	NA NA		ND		0.54	mg/Kg	ND		0.57	mg/Kg	ND		0.59	mg/K
Chloroform	19 (k)	28 (k)	1		ND		0.54	mg/Kg	ND		0.57	mg/Kg	ND		0.59	mg/K
Chloromethane	520	1000 (d)	10		ND	⊢	0.54	mg/Kg	ND		0.57	mg/Kg	ND		0.59	mg/K
Cis-1,2-Dichloroethene	79	1000 (d)	1		ND	-	0.54	mg/Kg	ND		0.57	mg/Kg	ND		0.59	mg/K
Cis-1,3-Dichloropropene	4	5 (k)	NA NA		ND	\vdash	0.54	mg/Kg	ND		0.57	mg/Kg	ND		0.59	mg/K
Dibromochloromethane	110	1000 (d)	1		ND		0.54	mg/Kg	ND		0.57	mg/Kg	ND		0.59	mg/K
Ethylbenzene	1000 (d)	1000 (d)			ND		0.54	mg/Kg	ND		0.57	mg/Kg	ND		0.59	mg/K
M&p-Xylenes	410	1000 (d)	100		ND		0.11	mg/Kg	ND		0.11	mg/Kg	ND		0.12	mg/K
Methylene chloride	49		67		ND		0.22	mg/Kg	ND		0.23	mg/Kg	0.13	l j	0.23	mg/K
O-Xylene	410	210	11		ND		0.54	mg/Kg	ND		0.57	mg/Kg	ND	+ +	0.59	mg/K
Styrene	23	1000 97	67		ND		0.11	mg/Kg	ND		0.11	mg/Kg	ND	1	0.12	mg/K
Tetrachloroethene	4 (k)		100		ND		0.54	mg/Kg	ND		0.57	mg/Kg	ND	\vdash	0.59	mg/K
Toluene	1000 (d)	6 (k)	1		ND		0.54	mg/Kg	ND		0.57	mg/Kg	ND	1	0.59	mg/K
Trans-1,2-Dichloroethene		1000 (d)	500		ND		0.11	mg/Kg	ND		0.11	mg/Kg	ND		0.12	mg/K
Trans-1,3-Dichloropropene	1000 (d)	1000 (d)	50	3102	ND		0.54	mg/Kg	ND		0.57	mg/Kg	ND		0.59	mg/K
Trichloroethene	4	5 (k)	1		ND		0.54	mg/Kg	ND		0.57	mg/Kg	ND	 	0.59	_
	23	54 (k)	1		ND		0.54	mg/Kg	ND		0.57	mg/Kg	ND	1	0.59	mg/K
Vinyl chloride	2	7	10	# # # # # # # # # # # # # # # # # # #	ND		0.54	mg/Kg	ND		0.57	mg/Kg	ND		0.59	mg/Kg

NA - Non Apllicable

ND - Non Detect

J - Estimated Value

BOLD- Indicates Excedence

d - Health based criteria exceeds the 1000 mg/kg maximun for total volatile organic contaminants.

k - Criteria based on inhalation exposure pathway, which yielded a more stringent criterion than the incidental exposure pathway.

TABLE 1A SOIL ANALYTICAL RESULTS **VOLITILE ORGANIC COUMPOUNDS** HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

	NJ Soil	NJ Soil	NJ impact To	CLIENT ID:	H14	-SB-03	-0427069	SO06	H14	-SB-0	4-04270	65005	LIA	4 8 8 8	V 04 040	0000000
Test Parameter	Residential	NonResidential	GW Cleanup	LAB ID:			180-001		1117	20074703000	3180-00		H1			806SO06
	Cleanup Criteria (mg/Kg	Cleanup Criteria	Criteria	COLLECT DATE:			7/2006		 		27/2006				C23223-0	100000
:TotalVolatileTic	Criteria (mg/Kg	(mg/Kg)	(mg/Kg)	and the second	Result	Flg	RL	Units	Result	Fig	RL	Units	Result	Flg	4/28/200 RL	
1,1,1,2-Tetrachloroethane	170	040			4.15	J	NA	mg/Kg	173.4	J	NA	mg/Kg	ND	rig	NA NA	Units
1,1,1-Trichloroethane	210	310			ND		0.6	mg/Kg	ND	+ +	0.58	mg/Kg	ND		0.53	mg/k
1,1,2,2-Tetrachloroethane	34	1000 (d)	50		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/k
1,1,2-Trichloroethane	22	70 (k)	1		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/K
1,1-Dichloroethane	570	420	1		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND	_	0.53	mg/K mg/K
1,1-Dichloroethene	8	1000 (d)	10		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/K
1,2-Dichloroethane	6	150 24	10		ND		0.6	mg/Kg	ND	\vdash	0.58	mg/Kg	ND	\vdash	0.53	mg/K
1,2-Dichloropropane	10	43	1 1		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/K
2-Butanone	1000 (d)		NA		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/K
2-Chloroethylvinylether	NA NA	1000 (d) NA	50		ND	\Box	0.6	mg/Kg	ND		0.58	mg/Kg	ND	\vdash	0.53	mg/K
2-Hexanone	NA NA	NA NA	NA		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/K
4-Methyl-2-Pentanone	1000 (d)	1000 (d)	NA FO		ND		0.6	mg/Kg	ND	\Box	0.58	mg/Kg	ND		0.53	mg/K
Acetone	1000 (d)	1000 (d)	50		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/K
Acrolein	NA NA	NA	100		ND		3	mg/Kg	6		2.9	mg/Kg	ND	_	2.6	mg/K
Acrylonitrile	1	NA	NA		ND		3	mg/Kg	ND		2.9	mg/Kg	ND		2.6	mg/K
Benzene	3	13	1 1		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND	\neg	0.53	mg/K
Bromodichloromethane	11	46	1		ND		0.12	mg/Kg	ND		0.12	mg/Kg	ND		0.11	mg/K
Bromoform	86	370	1		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND	-	0.53	mg/K
Bromomethane	79	1000 (d)	1		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND	-	0.53	mg/K
Carbon disulfide	NA NA	NA	1		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/K
Carbon tetrachloride	2 (k)	4 (k)	NA		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/K
Chlorobenzene	37	680	1		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/K
Chloroethane	NA NA	NA NA	4.0		ND	<u> </u>	0.6	mg/Kg	ND		0.58	mg/Kg	ND	_	0.53	mg/K
Chloroform	19 (k)	28 (k)	NA 1		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/K
Chloromethane	520	1000 (d)	10		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/Kg
Cis-1,2-Dichloroethene	79	1000 (d)	1		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/K
Cis-1,3-Dichloropropene	4	5 (k)			ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/K
Dibromochloromethane	110	1000 (d)	NA 1		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND	_	0.53	mg/K
Ethylbenzene	1000 (d)	1000 (d)	100		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/K
M&p-Xylenes	410	1000 (0)	67		ND		0.12	mg/Kg	ND		0.12	mg/Kg	ND	_	0.11	rng/Kg
Methylene chloride	49	210	1		ND		0.24	mg/Kg	ND		0.23	mg/Kg	ND		0.21	mg/K
O-Xylene	410	1000	67		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND	\dashv	0.53	mg/Kg
Styrene	23	97	100		ND		0.12	mg/Kg	ND		0.12	mg/Kg	ND	\neg	0.11	mg/Kg
Tetrachloroethene	4 (k)	6 (k)	1		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND	\dashv	0.53	mg/Kg
Toluene	1000 (d)	1000 (d)	500		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/Kg
Trans-1,2-Dichloroethene	1000 (d)	1000 (d)	500		ND		0.12	mg/Kg	ND	50-01	0.12	mg/Kg	ND		0.11	mg/Kg
rans-1,3-Dichloropropene	4	5 (k)	1		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND	\neg	0.53	mg/Kg
Trichloroethene	23	54 (k)	1		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/Kg
Vinyl chloride	2	7	10		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND	\neg	0.53	mg/Kg
			10		ND		0.6	mg/Kg	ND		0.58	mg/Kg	ND		0.53	mg/Kg

ND - Non Detect

J - Estimated Value

BOLD- Indicates Excedence

d - Health based criteria exceeds the 1000 mg/kg maximun for total volatile organic contaminants.

k - Criteria based on inhalation exposure pathway, which yielded a more stringent criterion than the incidental exposure pathway.

TABLE 1B SOIL ANALYTICAL RESULTS **BASE NEUTRAL ACIDS** HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

Test Parameter	NJ Soil Residential	NJ Soil NonResidential	NJ Impact To GW Cleanup	CLIENT ID: LAB ID:	H14		1-042606S 3158-001	006	H14-		P042606	3O06
Test Faranietei	Cleanup Criteria	Cleanup Criteria	Criteria	COLLECT DATE:			26/2006		+		158-002 6/200 6	
	(mg/Kg)	(mg/Kg)	(mg/Kg)		Result	FI		Units	Result	Fig		Un
:TotalSemiVolatileTic			- 20		53.72	J		mg/K		J	NA.	mg/
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	68	1200	100		ND		0.4	mg/K			0.42	mg/
1,2-Dichlorobenzene	5100	10000 c	50		ND		0.4	mg/K	g ND		0.42	mg/
1,3-Dichlorobenzene	NA F100	NA ADDOC	NA		ND ND		0.4	mg/K	g ND		0.42	mg/
1,4-Dichlorobenzene	5100 570	10000 c	100		ND		0.4	mg/K	g ND		0.42	mg/
2,4,5-Trichlorophenol	5600	10000 c	100		ND	_	0.4	mg/K			0.42	mg/
2,4,6-Trichlorophenol	62	10,000 c 270	50		ND		0.4	mg/K			0.42	mg/
2,4-Dichlorophenol	170	3100	10		ND		0.4	mg/K			0.42	mg/
2,4-Dimethylphenol	1100	10,000 c	10		ND	-	0,4	mg/K			0.42	mg/
2,4-Dinitrophenol	110	2100	10		ND	+	0.4	mg/K			0.42	mg/
2,4-Dinitrotoluene	1 (1)	4 (1)	10	10 A	ND NO		1	mg/K			1	mg/
2,6-Dinitrotoluene	1 (1)	4 (1)	10		ND	-	0.4	mg/Kg		-	0.42	mg/
2-Chloronaphthalene	NA NA	NA NA	NA NA		ND ND		0.4	mg/Kg			0.42	mg/
2-Chlorophenol	280	5200	10		ND	-	0.4	mg/Kg			0.42	mg/
2-Methylnaphthalene	NA	NA	NA NA		0.16	1,	0.4	mg/Kg		-	0.42	mg/
2-Methylphenol	2800	10,000 c	NA NA		ND	J	0.4	mg/Kg		J	0.42	mg/
2-Nitroaniline	NA NA	NA NA	NA NA		ND		0.4	mg/Kg		+-	0.42	mg/l
2-Nitrophenol	NA	NA	NA NA		ND	+	0.4	mg/Kg mg/Kg		+	0.42	mg/
3&4-Methylphenol	2800	10000	NA NA		0.88	-	0.4	mg/Kg		+	0.42	mg/
3,3'-Dichlorobenzidine	2	6	100		ND	+	0.4	mg/Kg		+	0.42	mg/
3-Nitroaniline	NA	NA NA	NA		ND	+	0.4	mg/Kg		+	0.42	mg/l
4,6-Dinitro-2-methylphenol	NA	NA	NA	- 12	ND	_	2	mg/Kg		-	2.1	mg/l
4-Bromophenyl-phenylether	NA .	NA NA	NA		NO		0,4	mg/Kg		+-	0.42	mg/l
4-Chloro-3-methylphenol	10,000 c	10,000 c	100		ND		0.4	mg/Kg		1-	0.42	mg/l
4-Chloroaniline	230	4200	NA NA		ND		0.4	mg/Kg	ND	1	0.42	mg/l
4-Chlorophenyl-phenylether	NA	NA	NA		ND		0.4	mg/Kg		\vdash	0.42	mg/l
4-Nitroaniline	NA NA	NA NA	NA		ND		0.4	mg/Kg			0.42	mg/l
4-Nitrophenol	NA	NA NA	NA		ND		0.4	mg/Kg	ND		0.42	mg/F
Acenaphthene	3400	10000	100		0.095	J	0.4	mg/Kg	0.13	J	0.42	mg/l
Acenaphthylene	NA NA	NA	NA		ND	16	0.4	mg/Kg	ND		0.42	mg/k
Anthracene	10000	10000	100		0.093	J	0.4	mg/Kg	0.14	J	0.42	mg/k
Benzidine	NA .	NA NA	NA		ND		0.4	mg/Kg	ND		0.42	mg/k
Benzo[a]anthracene Benzo[a]pyrene	0.9	4	500		0.17	J	0.4	mg/Kg	0.61		0.42	mg/K
Benzo[b]fluoranthene	0.66 (f)	0.66 (f)	100		0.16	J	0.4	mg/Kg	0.59		0.42	mg/K
Benzo[g,h,i]perylene	0.9 NA	4	50		0.2	J	0.4	mg/Kg	0.97		0.42	mg/k
Benzo[k]fluoranthene	0.9	NA 4	NA Foo		0.13	J	0.4	mg/Kg	0.31	J	0.42	mg/K
Benzyl alcohol	10,000 c	10,000 c	500		0.09	J	0.4	mg/Kg	0.31	J	0.42	mg/K
Bis(2-Chloroethoxy)methane	NA NA	NA NA	50 NA		ND	-	0.4	mg/Kg	ND		0.42	mg/K
Bis(2-Chloroethyl)Ether	0.66 (f)	3	10	7.0	ND	+	0.4	mg/Kg	ND	1	0.42	mg/K
Bis(2-Chloroisopropyl)ether	2300	10,000 c	10		ND	₩	0.4	mg/Kg	ND		0.42	mg/K
Bis(2-Ethylhexyl)phthalate	49	210	100		ND	-	0.4	mg/Kg	МD	-	0.42	mg/K
Butylbenzylphthalate	1100	10,000 c	100		0.73	ļ .	0.4	mg/Kg	0.63		0.42	mg/K
Carbazole	NA NA	NA NA	NA NA		0.18 ND	J	0.4	mg/Kg	0.14	J	0.42	mg/K
Chrysene	9	40	500		0.16	J	0.4	mg/Kg	0.13	J	0.42	mg/K
Dibenzo[a,h]Anthracene	0.66 (f)	0.66 (f)	100		ND ND	, J	0.4	mg/Kg	0.74		0.42	mg/K
Dibenzofuran	NA	NA NA	NA NA		0.057	J	0.4	mg/Kg	0.1	1	0.42	mg/K
Diethylphthalate	10,000 c	10,000 c	50		ND	-	0.4	mg/Kg		J	0.42	mg/K
Dimethylphthalate	10,000 c	10,000 c	50		ND	+	0.4	mg/Kg mg/Kg	ND ND	\vdash	0.42	mg/K
Di-n-butylphthalate	5700	10,000 c	100		0.053	J	0.4	mg/Kg	0.051	1	0.42	mg/K
DI-n-octylphthalate	1100	10,000 c	100		0.12	J	0.4	mg/Kg	0.051	J	0.42	mg/K
Fluoranthene	2300	10,000 c	100		0.45	-	0.4	mg/Kg	2.1	J	0.42	mg/K
Fluorene	2300	10,000 c	100		0.083	J	0.4	mg/Kg	0.2	J	0.42	mg/K
Hexachlorobenzene	0.66 (f)	2	100		ND	Ť	0.4	mg/Kg	ND	J	0.42	mg/K
Hexachlorobutadiene	1	21	100	-	ND		0.4	mg/Kg	ND	-	0.42	mg/K mg/K
lexachlorocyclopentadiene	400	7300	100		ND		0.4	mg/Kg	ND	+	0.42	mg/K
Hexachloroethane	6	100	100		ND	\Box	0.4	mg/Kg	ND	\vdash	0.42	mg/K
Indeno[1,2,3-cd]pyrene	0.9	4	500		0.1	j	0.4	mg/Kg	0.33	j	0.42	mg/Kg
Isophorone	1100	10,000 c	50		ND		0.4	mg/Kg	ND		0.42	
Naphthalene	230	4200	100		0.1	J	0.4	mg/Kg	0.1	J	0.42	mg/Kg
Nitrobenzene	28	520	10		ND		0.4	mg/Kg	ND	-	0.42	mg/Kg
N-Nitrosodimethylamine	NA	NA	NA		ND		0,4	mg/Kg	ND	-	0.42	mg/Kg
Nitroso-Di-N-Propylamine	0.66 (f)	0.66 (f)	10	9 12	ND		0.4	mg/Kg	ND		0.42	mg/Kg
N-Nitrosodiphenylamine	140	600	100		ND		0.4	mg/Kg	ND		0.42	mg/Kg
Pentachlorophenol	6	24	100		ND		1	mg/Kg	ND	_	1	mg/Kg
Phenanthrene	NA NA	NA	NA		0.37	J	0.4	mg/Kg	0.75	\neg	0.42	mg/Kg
Phenol	10000	10000	50	887 T	3,1		0.4	mg/Kg	1.5		0.42	mg/Kg
Pyrene	1700	10,000 c	100	100	0.38	J	0.4	mg/Kg	2	_	0.42	mg/Kg

NA - Non Apllicable ND - Non Detect

J - Estimated Value BOLD- Indicates Excedence

HMM Soil Results Tables/ BNA 1 of 3

c - Health based criteria exceeds the 10,000 mg/kg maximun for total organic contaminants.

f - Health based criterion is lower than analytical limits, clean-up criterion is based on practical quantitation level

TABLE 1B SOIL ANALYTICAL RESULTS **BASE NEUTRAL ACIDS** HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

Test Parameter	NJ Soil Residential	NJ Soil NonResidential	NJ Impact To GW Cleanup	CLIENT ID			-042606SC 158-003	006	H1		03-042 23180	706SO06
Test i arameter	Cleanup Criteria	Cleanup Criteria	Criteria	COLLECT DATE		_	/2006		 			
	(mg/Kg)	(mg/Kg)	(mg/Kg)	OGELLOT BATTLE	Result	Flg		Units	Result		27/20	
:TotalSemiVolatileTic					79.1	J	NA.	mg/Kg				
1,2,4-Trichlorobenzene	68	1200	100	<u> </u>	ND	- J	0.41	mg/Kg		J	N/	
1,2-Dichlorobenzene	5100	10000 c	50	TVCIN NAV	ND	+	0.41	mg/Kg		- 10	0.4	
1,2-Diphenylhydrazine	NA	NA	NA NA	100	ND	1 -	0.41	mg/Kg	-	-	0.4	+ -
1,3-Dichlorobenzene	5100	10000 c	100		ND	1	0.41	mg/Kg		-	0.4	
1,4-Dichlorobenzene	570	10000 c	100		ND	+	0.41	mg/Kg		 -	0.4	
2,4,5-Trichlorophenol	5600	10,000 c	50		ND		0.41	mg/Kg		\vdash	0.4	
2,4,6-Trichlorophenol	62	270	10		ND	1-	0.41	mg/Kg		_	0.4	
2,4-Dichlorophenol	170	3100	10		ND	+-	0.41			-	0.4	
2,4-Dimethylphenol	1100	10,000 c	10		ND		0.41	mg/Kg		_	0.43	+
2,4-Dinitrophenol	110	2100	10		ND	-	1	mg/Kg			0.42	
2,4-Dinitrotoluene	1 (1)	4 (1)	10		NO	+-	0.41	mg/Kg		-	1.1	- v v
2,6-Dinitrotoluene	1 (1)	4 (1)	10		ND	-	0.41	mg/Kg mg/Kg		_	0.42	- 0 0
2-Chloronaphthalene	NA	NA	NA		ND	-	0.41			_	0.42	
2-Chlorophenol	280	5200	10		ND	_	0.41	mg/Kg	ND	- 2	0.42	- × ×
2-Methylnaphthalene	NA .	NA	NA		1.9	+	0.41	mg/Kg			0.42	-
2-Methylphenol	2800	10,000 c	NA		ND	+	0.41	mg/Kg		J	0.42	
2-Nitroaniline	NA	NA	NA NA		ND	100	0.41	mg/Kg	ND ND		0.42	
2-Nitrophenol	NA NA	NA NA	NA NA		ND		0.41	mg/Kg		_	0.42	
3&4-Methylphenol	2800	10000	NA NA		ND ND	+	0.41	mg/Kg	ND	-	0.42	
3,3'-Dichlorobenzidine	2	6	100		ND ND		0.41	mg/Kg	ND ND		0.42	
3-Nitroaniline	NA	NA NA	NA NA		NO		0.41	mg/Kg			0.42	
4,6-Dinitro-2-methylphenol	NA NA	NA NA	NA NA		ND ND	1	2	mg/Kg	ND		0.42	9 9
4-Bromophenyl-phenylether	NA NA	NA NA	NA NA		ND ND	+	0.41	mg/Kg	ND	127	2.1	mg/Kg
4-Chloro-3-methylphenol	10,000 c	10,000 c	100	***	ND	1	0.41	mg/Kg	ND		0.42	
4-Chloroaniline	230	4200	NA NA		ND		0.41	mg/Kg	ND		0.42	mg/Kg
4-Chlorophenyl-phenylether	NA NA	NA	NA		ND	1	0.41	mg/Kg	ND		0.42	mg/Kg
4-Nitroaniline	NA NA	NA NA	NA NA	5 300	ND	\vdash	0.41	mg/Kg	ND	9	0.42	mg/Kg
4-Nitrophenol	NA	NA	NA		ND ND	+ 1		mg/Kg	ND		0.42	mg/Kg
Acenaphthene	3400	10000	100		0.79	-	0.41	mg/Kg	ND		0.42	mg/Kg
Acenaphthylene	NA NA	NA	NA NA		0.19	J		mg/Kg	0.12	J	0.42	mg/Kg
Anthracene	10000	10000	100		1	J	0.41	mg/Kg	ND		0.42	mg/Kg
Benzidine	NA NA	NA NA	NA		ND	\vdash		mg/Kg	0.19	J	0.42	mg/Kg
Benzo[a]anthracene	0.9	4	500		41.8		0.41	mg/Kg	ND		0.42	mg/Kg
Benzo[a]pyrene	0.66 (f)	0.66 (f)	100		1.3		0.41	mg/Kg	0.59		0.42	mg/Kg
Benzo[b]fluoranthene	0.9	4	50		1.8		0.41	mg/Kg	0.71	-	0.42	mg/Kg
Benzo(g,h,i)perylene	NA NA	NA	NA NA		0.75	\vdash	0.41	mg/Kg	0.99		0.42	mg/Kg
Benzo[k]fluoranthene	0.9	4	500		0.62	 	0.41	mg/Kg	0.54		0.42	mg/Kg
Benzył alcohol	10,000 c	10,000 c	50		ND	\vdash	0.41	mg/Kg	0.35	J	0.42	mg/Kg
Bis(2-Chloroethoxy)methane	NA NA	NA	NA NA		ND	-	0.41	mg/Kg	ND	_	0.42	mg/Kg
Bis(2-Chloroethyl)Ether	0.66 (f)	3	10		ND I	-		mg/Kg	ND		0.42	mg/Kg
Bis(2-Chloroisopropyl)ether	2300	10,000 c	10	- 100	ND	 	0.41	mg/Kg	ND		0.42	mg/Kg
Bis(2-Ethylhexyl)phthalate	49	210	100		1.9		0.41	mg/Kg	ND		0.42	mg/Kg
Butylbenzylphthalate	1100	10,000 c	100		ND ND		0.41	mg/Kg	0.74		0.42	mg/Kg
Carbazole	NA	NA	NA NA		0.63	-	0.41	mg/Kg	0.17	J	0.42	mg/Kg
Chrysene	9	40	500			-	0.41	mg/Kg	0.18	J	0.42	mg/Kg
Dibenzo[a,h]Anthracene	0.66 (f)	0.66 (f)	100		0.21	1	0.41	mg/Kg	0.64		0.42	mg/Kg
Dibenzofuran	NA NA	NA NA	NA NA		0.21	J	0.41	mg/Kg	0.15	J	0.42	mg/Kg
Diethylphthalate	10,000 c	10,000 c	50		0.73 ND	-	0.41	mg/Kg	0.12	J	0.42	mg/Kg
Dimethylphthalate	10,000 c	10,000 c	50		ND	-	0.41	mg/Kg	ND		0.42	mg/Kg
Di-n-buty/phthalate	5700	10,000 c	100				0.41	mg/Kg	ND	_	0.42	mg/Kg
DI-n-octy/phthalate	1100	10,000 c	100		0.28	J	0.41	mg/Kg		J	0.42	mg/Kg
Fluoranthene	2300	10,000 c	100		0.62	_	0.41	mg/Kg	ND		0.42	mg/Kg
Fluorene	2300	10,000 c	100		5	\dashv	0.41	mg/Kg	1.4		0.42	mg/Kg
Hexachlorobenzene	0.66 (f)	2	100		1.2	-	0.41	mg/Kg	0.14	J	0.42	mg/Kg
Hexachlorobutadiene	1	21	100		ND ND	-	0.41	mg/Kg	ND	_,	0.42	mg/Kg
Hexachlorocyclopentadiene	400	7300	100		ND ND	-+	0.41	mg/Kg	ND		0.42	mg/Kg
Hexachloroethane	6	100	100		ND	-	0.41	mg/Kg	ND		0.42	mg/Kg
Indeno[1,2,3-cd]pyrene	0.9	4	500	2 2 2	ND NZ	-	0.41	mg/Kg	ND		0.42	mg/Kg
Isophorone	1100	10,000 c	500		0.7	-	0.41		0.51		0.42	mg/Kg
Naphthalene	230	4200	100		ND 2.2	-		mg/Kg	ND		0.42	mg/Kg
Nitrobenzene	28	520	100		2.3	-			0.078		0.42	mg/Kg
N-Nitrosodimethylamine	NA NA	NA NA	NA NA		ND	+		mg/Kg	ND		0.42	mg/Kg
N-Nitroso-Di-N-Propylamine	0.66 (f)	0.66 (f)	10		ND	_		mg/Kg	ND		0.42	mg/Kg
N-Nitrosodiphenylamine	140	600	100		ND			mg/Kg	ND		0.42	mg/Kg
Pentachiorophenol	6	24	100		ND ND	_		mg/Kg	ND		0.42	mg/Kg
Phenanthrene	NA NA	NA NA	NA NA		ND				ND		1.1	mg/Kg
Phenol	10000	10000	50 50		6.1	_			0.95		0.42	mg/Kg
	1700	10,000 c	100		0.74 4.2				0.073	J	0.42	mg/Kg
Pyrene	1700						0.41	mg/Kg	1.1		0.42	mg/Kg

NA - Non Apllicable ND - Non Detect

J - Estimated Value BOLD- Indicates Excedence

c - Health based criteria exceeds the 10,000 mg/kg maximun for total organic contaminants.

f - Health based criterion is lower than analytical limits, clean-up criterion is based on practical quanitation level.

TABLE 1B SOIL ANALYTICAL RESULTS **BASE NEUTRAL ACIDS** HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

Test Parameter	NJ Soil Residential	NJ Soil NonResidential	NJ Impact To GW Cleanup	CLIENT ID: LAB ID:		1000	4-042 3180-	706SO05 002	H14		1-042 3223-	806SO06
	Cleanup Criteria	Cleanup Criteria	Criteria	COLLECT DATE:		4/2	27/200	6 .	1-		8/200	
:TotalSemiVolatileTic	(mg/Kg)	(mg/Kg)	(mg/Kg)		Result	Fig	RL	Units	Result	Flg	RL	Units
1,2,4-Trichlorobenzene	68	1200	100		510.9	J	NA	mg/Kg	89.95	J	NA	
1,2-Dichlorobenzene	5100	10000 c	100 50		ND		2	mg/Kg	ND		0.38	
1,2-Diphenylhydrazine	NA NA	NA NA	NA		ND ND		2	mg/Kg	ND		0.38	
1,3-Dichlorobenzene	5100	10000 c	100		ND		2	mg/Kg	ND	_	0.36	
1,4-Dichlorobenzene	570	10000 c	100		ND		2	mg/Kg	ND		0.38	-
2,4,5-Trichlorophenol	5600	10,000 c	50	- 170	ND	_	2	mg/Kg mg/Kg	ND ND	_	0.38	-
2,4,6-Trichlorophenol	62	270	10		ND		2	mg/Kg	ND	_	0.38	
2,4-Dichtorophenol	170	3100	10		ND		2	mg/Kg	ND		0.36	
2,4-Dimethylphenol	1100	10,000 c	10		ND		2	mg/Kg	ND		0.38	
2,4-Dinitrophenol	110	2100	10		ND		4.9	mg/Kg	ND	- 45,00	0.96	
2,4-Dinitrotoluene	1 (1)	4 (1)	10		ND		2	mg/Kg	ND		0.38	
2,6-Dinitrotoluene	1 (1)	4 (l)	10		ND	82%	2	mg/Kg	ND		0.38	
2-Chloronaphthalene	NA NA	NA	NA NA		ND		2	mg/Kg	ND		0.38	
2-Chlorophenol	280	5200	10		_ ND		2	mg/Kg	ND		0.38	
2-Methylnaphthalene 2-Methylphenol	NA 2800	NA .	NA		6.9	170	2	mg/Kg	ND		0.38	
2-Nitroaniline		10,000 c	NA NA		ND		2	mg/Kg	ND		0.38	
2-Nitrophenol	NA NA	NA NA	NA NA	_	ND		2	mg/Kg	ND		0.38	
3&4-Methylphenol	2800	10000	NA NA		ND		2	mg/Kg	ND		0.38	mg/K
3,3'-Dichlorobenzidine	2800	6	100		ND		2	mg/Kg	ND		0.38	
3-Nitroaniline	NA .	NA NA	NA NA		ND		2	mg/Kg	ND		0.38	_
4,6-Dinitro-2-methylphenol	NA NA	NA NA	NA NA		ND ND	_	9.8	mg/Kg	ND		0.38	mg/K
4-Bromophenyl-phenylether	NA NA	NA NA	NA NA	N 00-1	ND		2	mg/Kg	ND ND		1.9	mg/K
4-Chloro-3-methylphenol	10,000 c	10,000 c	100		ND	_	2	mg/Kg	ND		0.38	mg/K
4-Chloroaniline	230	4200	NA		ND	- 22-5	2	mg/Kg mg/Kg	ND		0.38	mg/K
4-Chlorophenyl-phenylether	NA	NA NA	NA NA		ND		2	mg/Kg	NO	-	0.38	mg/Kg
4-Nitroaniline	NA	NA	NA	2007 10 20	ND		2	mg/Kg	ND		0.38	mg/Kg
4-Nitrophenol	NA	NA	NA		ND		2	mg/Kg	ND		0.38	mg/Kg
Acenaphthene	3400	10000	100		0.46	J	2	mg/Kg	0.059	J	0.38	mg/Kg
Acenaphthylene	NA .	NA	NA		ND		2	mg/Kg	NO .		0.38	mg/Kg
Anthracene	10000	10000	100	821	0.3	J	2	mg/Kg	0.072	J	0.38	mg/Kg
Benzidine	NA NA	NA	NA		ND		2	mg/Kg	ND		0.38	mg/Kg
Benzo(a)anthracene	0.9	4	500		0.59	J	2	mg/Kg	0.29	J	0.38	mg/Kg
Benzo(a)pyrene	0.66 (f)	0.66 (f)	100		0.49	J	2	mg/Kg	0.31	J	0.38	mg/Kg
Benzo[b]fluoranthene Benzo[g,h,i]perylene	0.9	4	50		0.63	J	2	mg/Kg	0.41		0.38	mg/Kg
	NA O	NA .	NA .		0.35	J	2	mg/Kg	0.2	J	0.38	mg/Kg
Benzo[k]fluoranthene Benzyl alcohol	0.9 10,000 c	4 40 000 -	500		0.3	J	2	mg/Kg	0.16	J	0.38	mg/Kg
Bis(2-Chloroethoxy)methane	NA NA	10,000 c NA	NA NA		ND		2	mg/Kg	ND		0.38	mg/Kg
Bis(2-Chloroethyl)Ether	0.66 (f)	3	10		ND	_	2	mg/Kg	ND		0.38	mg/Kg
Bis(2-Chloroisopropyl)ether	2300	10,000 c	10		ND ND		2	mg/Kg	ND	-	0.38	mg/Kg
Bis(2-Ethy/hexyl)phthalate	49	210	100		1.2	J	2	mg/Kg	ND		0.38	mg/Kg
Butylbenzylphthalate	1100	10,000 c	100		ND ND	J	2	mg/Kg	0.21		0.38	mg/Kg
Carbazole	NA NA	NA NA	NA NA		ND		2	mg/Kg	ND ND	_	0.38	mg/Kg
Chrysene	9	40	500		0.57	J	2	mg/Kg mg/Kg	0.27		0.38	mg/Kg
Dibenzo[a,h]Anthracene	0.66 (f)	0.66 (f)	100		ND	- U	2	mg/Kg	0.065		0.38	mg/Kg
Dibenzofuran	NA	NA	NA NA		0.22	J	2	mg/Kg	ND ND		0.38	mg/Kg mg/Kg
Diethylphthalate	10,000 c	10,000 c	50	0.000	ND		2	mg/Kg	ND	_	0.38	mg/Kg
Dimethylphthalate	10,000 c	10,000 c	50		ND		2	mg/Kg	ND	_	0.38	ma/Ka
Di-n-butylphthalate	5700	10,000 c	. 100		0.27	J	2	mg/Kg	0.064		0.38	mg/Kg
Df-n-octylphthalate	1100	10,000 c	100		0.65	J	2	mg/Kg	ND	_	0.38	mg/Kg
Fluoranthene	2300	10,000 c	100		1.6	Ĵ	2	mg/Kg	0.47		0.38	mg/Kg
Fluorene	2300	10,000 c	100	100	0.51	J	2	mg/Kg	0.069		0.38	mg/Kg
Hexachlorobenzene	0.66 (f)	2	100		ND		2	mg/Kg	ND		0.38	mg/Kg
Hexachlorobutadiene	1	21	100		ND		2	mg/Kg	ND		0.38	mg/Kg
lexachlorocyclopentadiene Hexachlorocyclopentadiene	400	7300	100		ND		2	mg/Kg	ND		0.38	mg/Kg
Hexachioroethane	6	100	100		ND		2	mg/Kg	ND		0.38	mg/Kg
Indeno[1,2,3-cd]pyrene Isophorone	0.9	4 40 000 -	500		0.29	J	2	mg/Kg	0.2	J (0.38	mg/Kg
Naphthalene	1100 230	10,000 c	50	Digital Control	ND		2	mg/Kg	ND		0.38	mg/Kg
Nitrobenzene	28	4200 520	100		ND		2	mg/Kg	ND		0.38	mg/Kg
N-Nitrosodimethylamine	NA NA	NA SZO	10 NA		ND		2	mg/Kg	ND	-	0.38	mg/Kg
-Nitroso-Di-N-Propylamine	0.66 (f)	0.66 (f)	10 10		ND	-	2	mg/Kg	ND		0.38	mg/Kg
N-Nitrosodiphenylamine	140	600	100		ND ND		2	mg/Kg	ND).38	mg/Kg
Pentachlorophenol	6	24	100		ND ON		2	mg/Kg	ND		0.38	mg/Kg
Phenanthrene	NA .	NA NA	NA NA		1.4	J	4.9	mg/Kg	ND		0.96	mg/Kg
Phenol	10000	10000	50		ND :	9	2	mg/Kg mg/Kg	0.23 ND		.38	mg/Kg
THIGHO												mg/Kg

NA - Non Apllicable ND - Non Detect

J - Estimated Value BOLD- Indicates Excedence

c - Health based criteria exceeds the 10,000 mg/kg maximun for total organic contaminants.

f - Health based criterion is lower than analytical limits, clean-up criterion is based on practical quanitation level.

TABLE 1C SOIL ANALYTICAL RESULTS METALS

HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

	NJ Soil	NJ Soil	NJ Impact To	CLIENT ID:	H14-S	B-01-	0426068	SO06	H14-S	B1Dl	JP042606	SO06	H14-9	SB-02	-042606	SO06
Test Parameter	Residential	NonResidential	GW Cleanup	LAB ID:	,	AC231	58-001	-		AC23	3158-002			-	158-003	
	Cleanup Criteria (mg/Kg)	Cleanup Criteria	Criteria	COLLECT DATE:	_** 175	4/26	/2006	-	-	_	6/2006	_		76-01-01-01-01-01-01-01-01-01-01-01-01-01-	6/2006	
Mercury		(mg/Kg)	(mg/Kg)		Result	Flg	RL	Units	Result	Flg	RL	Units	Result	Flg	RL	Units
	14	270	NA	200	0.28		0.1	mg/Kg	0.25	Ť	0.1	mg/Kg	0.2	- '9	0.1	-
Antimony	14	340	NA NA	* * * * * * * * * * * * * * * * * * * *	ND	\Box	2.4	mg/Kg	ND	-	2.5	mg/Kg	ND	-	_	mg/K
Arsenic	20	20	NA NA		ND		2.4	mg/Kg	ND	-	2.5			\vdash	2.4	mg/K
Barium	700	4700 (n)	NA NA		34		12			H		mg/Kg	3.3	1	2.4	mg/K
Beryllium	1(f) / 2(e)	1(f) / 2(e)	NA NA	-	ND ND		555.5	mg/Kg	43		12	mg/Kg	150		12	mg/K
Cadmium	39	100	NA NA		ND	\vdash	0.72	mg/Kg	ND	Щ		mg/Kg	ND		0.73	mg/K
Chromium	120000	(i)	NA -			\vdash	0.72	mg/Kg	ND		0.75	mg/Kg	ND		0.73	mg/K
Copper	600 (m)	600 (m)	NA I		ND	- ∔	6	mg/Kg	ND		6.2	mg/Kg	11		6.1	mg/K
Lead	400(p)	600(q)	NA NA		15		6	mg/Kg	160		6.2	mg/Kg	38		6.1	mg/Kg
Nickel	250	2400 (k), (n)	NA NA		40	-	6	mg/Kg	44		6.2	mg/Kg	190		6.1	mg/Ko
Selenium	63	3100			6.5	\Box	6	mg/Kg	9.1		6.2	mg/Kg	8.1		6.1	mg/Kg
Silver	110		NA NA		ND		2.2	mg/Kg	ND		2.2	mg/Kg	ND		2.2	mg/Kg
Thallium	2 (f)	4100 (n)	NA		ND		3	mg/Kg	ND		3.1	mg/Kg	ND		3	mg/Kg
Zinc		2 (f)	NA NA		ND		1.4	mg/Kg	ND			mg/Kg	ND	\vdash	1.5	mg/Kg
ZIIIG	1500 (m)	1500 (m)	NA NA		41		12	mg/Kg	60	\neg		mg/Kg	240		12	mg/Kg

NA - Non Apllicable

ND - Non Detect

J - Estimated Value

BOLD- Indicates Excedence

- e Clean-up standard proposal was based on natural background.
- f Health based criterion is lower than analytical limits, clean-up criterion is based on practical quanitation level.
- i Contaminant not regulated for this exposure pathway.
- k Criteria based on inhalation exposure pathway, which yielded a more stringent criterion than the incidental exposure pathway.
- m Criterion based on ecological (phytotoxicity) effects.
- n Level of the human health based criterion is such that evaluation for potential environmental impacts on a site by site basis
- p Criterion based on the USEPA Integrated Exposure Uptake Biokinetic (IEUBK) model utilizing the default parameters.
- q Criteria were derived from a model developed by the Society for Environmental Geochemistry and Health (SEGH)

TABLE 1C SOIL ANALYTICAL RESULTS METALS

HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

	NJ Soil	NJ Soil	NJ Impact To	CLIENT ID:	H14-	SB-03	3-0427	06SO06	H14-	SB-04	-0427	06SO05	H14-	-MW-01	1-0428	06SO06
Test Parameter	Residential	NonResidential	GW Cleanup	LAB ID:		AC2	3180-0	01		-	3180-0		1		223-0	
	Cleanup Criteria (mg/Kg)	Cleanup Criteria	Criteria	COLLECT DATE:		4/2	7/200	3			7/2006				8/2006	
Manue		(mg/Kg)	(mg/Kg)		Result	Flg	RL	Units	Result	Flg	RL	Units	Result	Flg	RL	Units
Mercury	14	270	NA		0.33		0.11	mg/Kg	0.31		0.1	mg/Kg	0.11	1.19	_	
Antimony	14	340	NA		ND		2.5	mg/Kg	ND ND		2.4				0.1	mg/Kg
Arsenic	20	20	NA		ND	_	2.5	mg/Kg	ND			mg/Kg	ND		2.3	mg/Kg
Barium	700	4700 (n)	NA		47		13				2.4	mg/Kg	ND		2.3	mg/Kg
Beryllium	1(f) / 2(e)	1(f) / 2(e)	NA		- 11	- 1		mg/Kg	98	_	12	mg/Kg	30		11	mg/Kg
Cadmium	39	100	NA NA		ND		0.76	mg/Kg	ND		0.71	mg/Kg	ND		0.69	mg/Kg
Chromium	120000	(i)	NA NA	-	ND		0.76	mg/Kg	ND		0.71	mg/Kg	ND	(i)	0.69	mg/Kg
Copper	600 (m)	600 (m)			6.9		6.3	mg/Kg	9.7		5.9	mg/Kg	6		5.7	mg/Kg
Lead	400(p)		NA		17		6.3	mg/Kg	24		5.9	mg/Kg	12		5.7	mg/Kg
Nickel	250	600(q)	NA NA	10. 20 M	82		6.3	mg/Kg	52		5.9	mg/Kg	36		5.7	mg/Kg
		2400 (k), (n)	NA NA		ND		6.3	mg/Kg	12		5.9	mg/Kg	ND	-	5.7	mg/Kg
Selenium	63	3100	NA NA		ND		2.3	mg/Kg	ND		2.1	mg/Kg	ND		2.1	~
Silver	110	4100 (n)	NA	· · · · · · · · · · · · · · · · · · ·	ND		3.2	mg/Kg	ND		2.9	mg/Kg	ND	_	_	mg/Kg
Thallium	2 (f)	2 (f)	NA		ND		1.5	mg/Kg	ND	-	$\overline{}$				2.9	mg/Kg
Zinc	1500 (m)	1500 (m)	NA NA		66	-	13				1.4	mg/Kg	ND		1.4	mg/Kg
V V V V V V V V V V V V V V V V V V V					- 00		13	mg/Kg	99		12	mg/Kg	37		11 [mg/Kg

NA - Non Apllicable

ND - Non Detect

J - Estimated Value

BOLD- Indicates Excedence

- e Clean-up standard proposal was based on natural background.
- f Health based criterion is lower than analytical limits, clean-up criterion is based on practical quanitation level.
- j Contaminant not regulated for this exposure pathway.
- k Criteria based on inhalation exposure pathway, which yielded a more stringent criterion than the incidental exposure pathway.
- m Criterion based on ecological (phytotoxicity) effects.
- n Level of the human health based criterion is such that evaluation for potential environmental impacts on a site by site basis
- p Criterion based on the USEPA Integrated Exposure Uptake Biokinetic (IEUBK) model utilizing the default parameters.
- q Criteria were derived from a model developed by the Society for Environmental Geochemistry and Health (SEGH)

TABLE 1D

SOIL ANALYTICAL RESULTS

POLYCHLORINATED BIPHENYL COMPOUNDS (PCB) HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

	NJ Soil Residential	NJ Soil	NJ Impact To		H14	-SB-01	-042606S	006	H14-5	B1DU	P0426065	SO06	H14-	SB-02	-042606S	006
Test Parameter	Cleanup Criteria	NonResidential Cleanup Criteria	GW Cleanup Criteria	LAB ID:			3158-001				158-002				158-003	
	(mg/Kg)	(mg/Kg)	(mg/Kg)	COLLECT DATE:			6/2006			4/20	5/2006			4/26	5/2006	
Aroclor-1016	0.49	2			Result	Flg	RL	Units	Result	Flg	RL	Units	Result	Flg	RL	Units
Aroclor-1221			50		ND		0.3	mg/Kg	ND		0.16	mg/Kg	ND		0.61	mg/Kg
	0.49	2	50		ND		0.3	mg/Kg	ND	 	0.16			 		
Aroclor-1232	0.49	2	50		ND	-	0.3	 				mg/Kg			0.61	mg/Kg
Aroclor-1242	0.49	2	50					mg/Kg			0.16	mg/Kg	ND		0.61	mg/Kg
Aroclor-1248	0.49				6.3	6	0.3	mg/Kg	5.1		0.16	mg/Kg	30		0.61	mg/Kg
Aroclor-1254	0.49		50		ND		0.3	mg/Kg	ND		0.16	mg/Kg	ND		0.61	mg/Kg
	0.49	2	50		ND		0.3	mg/Kg	ND		0.16		ND	-		
Aroclor-1260	0.49	2	50		ND							mg/Kg		\vdash	0.61	mg/Kg
-				<u> </u>	ND		0.3	mg/Kg	ND	1 1	0.16	mg/Kg	ND	lĺ	0.61	mg/Kg

NA - Non Apllicable

ND - Non Detect

J - Estimated Value

BOLD- Indicates Exced Indicates Excedence

TABLE 1D SOIL ANALYTICAL RESULTS POLYCHLORINATED BIPHENYL COMPOUNDS (PCB) HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

	NJ Soil	NJ Soil	NJ Impact To		H14-	-SB-03	-04270	06SO06	H14-	SB-04	1-0427	06SO05	H14-	MW-0	1-0428	06SO06
Test Parameter	Residential Cleanup Criteria	NonResidential	GW Cleanup			AC23	3180-00)1			3180-0				3223-00	
	(mg/Kg)	Cleanup Criteria (mg/Kg)	Criteria (mg/Kg)	COLLECT DATE:			7/2006			4/2	7/2006	3			8/2006	10.71
Aroclor-1016	0.49	(9/1(9)			Result	Flg	RL	Units	Result	Flg	RL	Units	Result	Flg	RL	Units
Aroclor-1221	0.49		50		ND		0.03	mg/Kg	ND	"	0.29	mg/Kg	ND		0.03	mg/Kg
Aroclor-1232	0.49	2	50		ND		0.03	mg/Kg	ND		0.29	mg/Kg	ND		0.03	mg/Kg
Aroclor-1242	0.49		50		ND		0.03	mg/Kg	ND		0.29	mg/Kg	ND		0.03	mg/Kg
Aroclor-1248	0.49	2	50		0.21		0.03	mg/Kg	.14		0.29	mg/Kg	ND		0.03	mg/Kg
Aroclor-1254	0.49	2	50	<u></u>	ND	_	0.03	mg/Kg	ND		0.29	mg/Kg	ND		0.03	mg/Kg
Aroclor-1260	0.49	2	50		0.067		0.03	mg/Kg	2.5		0.29	mg/Kg	ND	6	0.03	mg/Kg
	1 0.43		50		ND		0.03	mg/Kg	ND		0.29	mg/Kg	ND	+5	0.03	mg/Kg

NA - Non Apllicable

ND - Non Detect

J - Estimated Value

BOLD- Indicates Excedence

TABLE 1E SOIL ANALYTICAL RESULTS PESTICIDES

HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

	NJ Soil Residential	NJ Soil	NJ Impact To	CLIENT ID:	H14	SB-01	-042606S0	206	H14-8	SB1DU	P042606S0	206	H14	-SB-02	2-042606S0	One
Test Parameter	Cleanup Criteria	NonResidential	GW Cleanup	LAB ID:		AC23	158-001			-	158-002				3158-003	200
	(mg/Kg)	Cleanup Criteria	Criteria (mg/Kg)	COLLECT DATE:		4/2	6/2006	-			6/2006	_			6/2006	
Aldrin		(mg/Kg)			Result	Flg	RL	Units	Result	Flg	RL	Units	Result	Fig	8L	T 1 Indian
Alpha-BHC	0.04	0.17	50		ND		0.006	mg/Kg	ND	1	0.0063	mg/Kg	ND	rig		Units
	NA NA	NA	NA		ND	\vdash	0.006	mg/Kg	ND	+	0.0063		ND	-	0.0061	mg/Kg
Beta-BHC	NA	NA	NA		ND		0.006	mg/Kg	ND	\vdash		mg/Kg		-	0.0061	mg/Kg
Chlordane	NA	NA	NA		ND	┝─┤	0.012	mg/Kg	ND	-	0.0063	mg/Kg	ND	<u> </u>	0.0061	mg/Kg
Delta-BHC	NA	NA	NA		ND	\vdash	0.006	_		\vdash	0.013	mg/Kg	ND		0.012	mg/Kg
Dieldrin	0.042	0.18	50		ND	\vdash	0.006	mg/Kg	ND	\vdash	0.0063	mg/Kg	ND		0.0061	mg/Kg
Endosulfan I	340	6200	50		ND	\vdash		mg/Kg	ND	\vdash	0.0063	mg/Kg	ND		0.0061	mg/Kg
Endosulfan II	340	6200	50			\vdash	0.006	mg/Kg	ND	\perp	0.0063	mg/Kg	ND	L l	0.0061	mg/Kg
Endosulfan Sulfate	NA	NA	NA NA		ND ND		0.006	mg/Kg	ND		0.0063	mg/Kg	ND		0.0061	mg/Kg
Endrin	17	310	50		ND	\vdash	0.006	mg/Kg	ND		0.0063	mg/Kg	ND		0.0061	mg/Kg
Endrin Aldehyde	NA	NA .	NA NA		ND	-	0.006	mg/Kg	ND		0.0063	mg/Kg	ND		0.0061	mg/Kg
Endrin Ketone	NA.	NA NA	NA NA		ND	\Box	0.006	mg/Kg	ND	LI	0.0063	mg/Kg	ND		0.0061	mg/Kg
Gamma-BHC	0.52	2.2			ND		0.006	mg/Kg	ND		0.0063	mg/Kg	ND		0.0061	mg/Kg
Heptachlor	0.15	0.65	NA NA		ND		0.006	mg/Kg	ND		0.0063	mg/Kg	ND		0.0061	mg/Kg
Heptachlor Epoxide	NA NA		50		ND		0.006	mg/Kg	ND		0.0063	mg/Kg	ND	\vdash	0.0061	mg/Kg
Methoxychlor	280	NA Soos	NA NA		ND		0.006	mg/Kg	ND		0.0063	mg/Kg	ND		0.0061	mg/Kg
P,P'-DDD	3	5200	50		ND		0.006	mg/Kg	ND	\vdash	0.0063	mg/Kg	ND		0.0061	
P.P'-DDE		12	50		ND		0.006	mg/Kg	ND		0.0063	mg/Kg	ND	 		mg/Kg
P.P'-DDT	2	9	50		0.015		0.006	mg/Kg	0.014	\vdash	0.0063	-	0.043		0.0061	mg/Kg
	2	9	500		ND	7	0.006	mg/Kg	ND		0.0063	mg/Kg		\vdash	0.0061	mg/Kg
Toxaphene	0.10 (k)	0.20 (k)	50	*	ND		0.03	mg/Kg	ND	-	0.0063	mg/Kg mg/Kg	ND ND		0.0061	mg/Kg mg/Kg

NA - Non Apllicable

ND - Non Detect

J - Estimated Value

BOLD- Indicates Excedence

k - Criteria based on inhalation exposure pathway

TABLE 1E SOIL ANALYTICAL RESULTS PESTICIDES

HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

	NJ Soil Residential	NJ Soil	NJ Impact To	CLIENT ID: H14-SB-03-042706SO06					H14	-SB-04	-04270	06SO05	H14-MW-01-042806SO06			
Aldrin Alpha-BHC Beta-BHC Chlordane Delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan Sulfate Endrin Endrin Aldehyde Endrin Ketone Gamma-BHC Heptachlor Heptachlor Epoxide	Cleanup Criteria	NonResidential	GW Cleanup	LAB ID:		AC2	3180-0	01		AC23180-002			AC23223-001			
	(mg/Kg)	Cleanup Criteria	Criteria (mg/Kg)	COLLECT DATE:	4/27/2006				4/27/2006				4/28/2006			
Aldrin		(mg/Kg)			Result	Fig	RL	Units	Result	Flg	RL	Units	Result	Flg	RL	Units
	0.04	0.17	50		ND		0.01	mg/Kg	ND		0.01	mg/Kg	ND	9	0.01	mg/Kg
	NA NA	NA	NA		ND		0.01	mg/Kg	ND	_	0.01	mg/Kg	ND	- 6	0.01	
	NA NA	NA	NA		ND		0.01	mg/Kg	ND		0.01	mg/Kg	ND		0.01	mg/Kg
	NA	NA	NA		ND		0.01	mg/Kg	ND	-	0.01	mg/Kg	ND	_		mg/Kg
	NA	NA	NA	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	ND		0.01	mg/Kg	ND	_	0.01			_	0.01	mg/Kg
	0.042	0.18	50		ND		0.01	mg/Kg	ND		0.01	mg/Kg	ND		0.01	mg/Kg
	340	6200	50		ND	-	0.01	mg/Kg	ND			mg/Kg	ND	-	0.01	mg/Kg
Endosulfan II	340	6200	50		ND	-	0.01				0.01	mg/Kg	ND		0.01	mg/Kg
Endosulfan Sulfate	NA	NA	NA NA		ND		0.01	mg/Kg	ND		0.01	mg/Kg	ND		0.01	mg/Kg
Endrin	17	310	50		ND		100000000000000000000000000000000000000	mg/Kg	ND		0.01	mg/Kg	ND		0.01	mg/Kg
Endrin Aldehyde	NA	NA NA	NA NA		ND	- 0	0.01	mg/Kg	ND		0.01	mg/Kg	ND		0.01	mg/Kg
Endrin Ketone	NA	NA	NA NA		ND ND		0.01	mg/Kg	ND		0.01	mg/Kg	ND		0.01	mg/Kg
Gamma-BHC	0.52	2.2	NA NA				0.01	mg/Kg	ND		0.01	mg/Kg	ND		0.01	mg/Kg
Heptachlor	0.15	0.65	50		ND		0.01	mg/Kg	ND		0.01	mg/Kg	ND		0.01	mg/Kg
Heptachlor Epoxide	NA	NA			ND	_	0.01	mg/Kg	ND		0.01	mg/Kg	ND		0.01	mg/Kg
Methoxychlor	280	5200	NA FO		ND		0.01	mg/Kg	ND		0.01	mg/Kg	ND		0.01	mg/Kg
P.P'-DDD	3	12	50		ND		0.01	mg/Kg	ND		0.01	mg/Kg	ND		0.01	mg/Kg
P,P'-DDE	2	9	50		ND		0.01	mg/Kg	ND		0.01	mg/Kg	ND		0.01	mg/Kg
P,P'-DDT	2		50		ND		0.01	mg/Kg	0.025		0.01	mg/Kg	ND		0.01	mg/Kg
Toxaphene		9	500		ND		0.01	mg/Kg	ND		0.01	mg/Kg	ND		0.01	mg/Kg
Ovabilette	0.10 (k)	0.20 (k)	50		ND	- 0	0.03	mg/Kg	ND		0.03	mg/Kg	ND		0.03	mg/Kg

NA - Non Apllicable ND - Non Detect

J - Estimated Value

BOLD- Indicates Excedence

k - Criteria based on inhalation exposure pathway

TABLE 1F

SOIL ANALYTICAL RESULTS

% SOILIDS, CYANIDE, TOTAL PHENOLICS, and TOTAL PETROLEUM HYDROCARBONS

HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

Test Parameter	NJ Soil	The Son The Minipact To					42606SO	06	H14-S	B1DUP	042606SC	D06 T	H14-SB-02-042606SO06			
	Residential NonResidential Cleanup Criteria (mg/Kg (mg/Kg)			LAB ID: COLLECT DATE:					AC23158-002				AC23158-003			
						4/26/2	2006			4/26/2006				4/26/2006		
% Solids	NA NA		(mg/Kg)		Result	Flg	RL	Units	Result	Flg	RL	Units	Result	Flg	RL	Units
Cyanide	1100	NA 000 (1)	NA NA		83			Percent	80			Percent	82	1		Percen
Total Phenolics	1100	21,000 (o)	NA NA		ND		0.3	mg/kg	ND		0.31	mg/kg	0.78		0.3	mg/kg
Total Petroleum Hydrocarbons	10000	40000	10000		3.4	\perp	1.5	mg/kg	2.3		1.6	mg/kg	2	+	1.5	mg/kg
· · · · · · · · · · · · · · · · · · ·	10000	10000	10000		1400		41	mg/kg	1100		43	mg/kg	7200	1	410	mg/kg

NA - Non Apllicable

ND - Non Detect

J - Estimated Value

BOLD- Indicates Excedence

o - Level of the criterion is such that evaluation for potential acute exposure hazard is recommended.

TABLE 1F

SOIL ANALYTICAL RESULTS

% SOILIDS, CYANIDE, TOTAL PHENOLICS, and TOTAL PETROLEUM HYDROCARBONS

HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

Test Parameter % Solids	NJ Soil	NonResidential	NJ Impact To		AC23180-001			H1	H14-MW-01-042806S006							
	Residential Cleanup Criteria		GW Cleanup	CAU ID.					2	AC23223-001						
	Cleanup Criteria Cleanup Criter (mg/Kg (mg/Kg)			COLLECT DATE:	DATE: 4/27/2006 4/27/2006							4/28/2006				
9/ Calida			(mg/Kg)		Result	Flg	RL	Units	Result	Flg	RL	Units	Result	Fla	RL	Units
	NA NA	NA	NA		79			Percent	85			Percent	87	1.9	1,,,,	Percent
Cyanide	1100	21,000 (o)	NA		ND		0.32				0.00					
Total Phenolics					140		_	mg/kg	0.32		0.29	mg/kg	ND		0.29	mg/kg
otal Petroleum Hydrocarbons	10000	40000	10000		2.1		1.6	mg/kg	2.9		1,5	mg/kg	1.7		1.4	mg/kg
- I oli oli oli oli i i i i i i i i i i i i	10000	10000	10000		1200		43	mg/kg	13000		1000	mg/kg	92		39	mg/kg

NA - Non Apllicable

ND - Non Detect

J - Estimated Value

BOLD- Indicates Excedence

o - Level of the criterion is such that evaluation for potential acute exposure hazard is recommended.

TABLE 2A GROUND WATER ANALYTICAL RESULTS VOLITILE ORGANICS

HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

NJ Ground Water	1 1 1 1 1 1 1	CLIENT ID: H14-MW-01-051606WG01							H14-MW-01D-051606WG01					
Quality Criteria	LAB ID: AC23527-001					AC23527-002								
(ug/L)	COLLECT DATE:	5/	06		5/16/2006									
		Result Fig		RL	Units	Result	Fig	RL	Unit					
		262.3	J	NA	ug/L	258.5	J	NA	ug/					
		ND		0.33	ug/L	ND		0.33	ug/					
		ND		0.43	ug/L	ND		0.43	ug/l					
		ND		0.37	ug/L	ND	1 1	10000000	ug/l					
3		ND		0.25	ug/L	ND			ug/l					
50		2.3	П	0.28	ug/L	2.4			ug/l					
1		ND		0.4	ug/L	ND	1		ug/l					
2		ND		0.42	ug/L	ND			ug/L					
1		ND		0.48					ug/L					
300		ND		0.92			1		ug/l					
NA		ND		0.33					ug/L					
NA		ND	\Box						ug/L					
NA	100	ND	\Box				\vdash							
6000		ND					+		ug/L					
5		ND					\vdash		ug/L					
2		ND			1		+ +		ug/L					
1					-		1		ug/L					
1		1000000					+ +		ug/L					
4							\vdash		ug/L					
10			- 1		+ × +		 		ug/L					
700			-+				100		ug/L					
1			-		-		1 -		ug/L					
50			\dashv				\vdash		ug/L					
NA			_				\vdash		ug/L					
70			\dashv				- 1		ug/L					
NA			_				\vdash		ug/L					
70	*		-+		-		\vdash		ug/L					
1			_		-				ug/L					
1			+		_		\vdash		ug/L					
			-+				-		ug/L					
			\dashv				_		ug/L					
3			-				\vdash	-	ug/L					
			+				\vdash		ug/L					
			\dashv				—		ug/L					
								0.37	ug/L					
							\perp	0.35	ug/L					
			+					0.31	ug/L					
	-		-		ug/L	ND	\perp	0.44	ug/L					
			_		ug/L	ND		0.22	ug/L					
					ug/L	ND		0.31	ug/L					
	1 2 1 300 NA NA NA NA 6000 5 2 1 1 1 4 10 700 1 1 50 NA 70 NA 70 1 1 700 1000 1000	30 1 3 50 1 3 50 1 2 1 300 NA NA NA NA NA 6000 5 2 1 1 1 4 10 700 1 50 NA 70 NA 70 NA 70 1 1 1 700 1000 3 1000 100 1 1 1000 1 1 1000 1	262.3 10 ND ND ND ND ND ND ND N	262.3 J 10 ND ND ND 11 ND 12 ND ND ND ND ND ND ND N	262.3 J NA	262.3 J NA ug/L	262.3 J NA ug/L 258.5	262.3 J NA ug/L 258.5 J NO ND	10					

NA - Not Applicable

ND - Non-Detect

J - Estimated Value

BOLD- Indicates Excedence

TABLE 2B GROUND WATER ANALYTICAL RESULTS BASE NUTRIAL ACIDS HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

	NJ Ground Water	CLIENT ID:	H14-MW-	01-05	1606WG0	1	H14-MW-0	01D-05	1606WG	01
TestName	Quality Criteria	LAB ID:	AC	2352	7-001			23527		
	(ug/L)	COLLECT DATE:	5	/16/2	006			/16/20		
			Result	Flg	RL	Units	Result	Fla	RL	Units
:TotalSemiVolatileTic			3500	J	NA	ug/L	2425	J	NA NA	ug/L
1,2,4-Trichlorobenzene	9		ND		10	ug/L	ND	Ť	5.3	ug/L
1,2-Dichlorobenzene	600		ND	\top	12	ug/L	ND	+	6.4	ug/L
1,2-Diphenylhydrazine	20		ND		2.9	ug/L	ND		1.5	ug/L
1,3-Dichlorobenzene	600	3.0	ND		15	ug/L	ND	1 -	7.8	ug/L
1,4-Dichlorobenzene	75	000	ND		16	ug/L	ND	1	8.4	ug/L
2,4,5-Trichlorophenol	700		ND		41	ug/L	ND		21	
2,4,6-Trichlorophenol	20	1.01	ND	1	19	ug/L	ND	+ -	9.7	ug/L ug/L
2,4-Dichlorophenol	20		ND	1	27	ug/L	ND	+	14	
2,4-Dimethylphenol	100		23	J	43	ug/L	21	J	22	ug/L
2,4-Dinitrophenol	40		ND	+-	14	ug/L	ND ND	1	7	ug/L
2,4-Dinitrotoluene	10		ND	\vdash	7.9	ug/L	ND	+	4	ug/L
2,6-Dinitrotoluene	10		ND	+	7.2	ug/L	ND	1		ug/L
2-Chloronaphthalene	600		ND		8.9	ug/L	ND	+	3.7	ug/L
2-Chlorophenol	40		ND	-	32	ug/L	ND ND	+	4.5	ug/L
2-Methylnaphthalene	NA		ND	+	76	ug/L	ND ND	+ +	16	ug/L
2-Methylphenol	NA		ND		84	ug/L	ND	1-1	39	ug/L
2-Nitroaniline	NA NA		ND	\vdash	36	ug/L ug/L	ND ND	+ -	43	ug/L
2-Nitrophenol	NA		ND	1	18	ug/L	ND ND	\vdash	18	ug/L
3&4-Methylphenol	NA		300		89	ug/L	220	╁	9	ug/L
3,3'-Dichlorobenzidine	30		ND	Н	17	1			46	ug/L
3-Nitroaniline	NA NA		ND	\vdash	56	ug/L	ND ND	\vdash	8.9	ug/L
4,6-Dinitro-2-methylphenol	NA		ND	+	18	ug/L	ND ND	\vdash	29	ug/L
4-Bromophenyl-phenylether	NA NA		ND		11	ug/L	ND	\vdash	9	ug/L
4-Chloro-3-methylphenol	NA NA		ND		24	ug/L	ND	\vdash	5.8	ug/L
4-Chloroaniline	30	 	ND	\vdash	66	ug/L	ND	\vdash	12	ug/L
4-Chlorophenyl-phenylether	NA NA		ND ND	┥		ug/L	ND		34	ug/L
4-Nitroaniline	NA NA		ND	Н	8.2	ug/L	ND		4.2	ug/L
4-Nitrophenol	NA NA				34	ug/L	ND ND	\vdash	17	ug/L
Acenaphthene	400		ND ND	\vdash	24	ug/L	ND		12	ug/L
Acenaphthylene	NA NA		ND	\vdash	5.5	ug/L	ND		2.8	ug/L
Anthracene	2000		ND	\vdash	5.3	ug/L	ND		2.7	ug/L
Benzidine	2000		ND	\vdash	4	ug/L	ND		2.1	ug/L
Benzo[a]anthracene	0.1		ND	\vdash	190	ug/L	ND		96	ug/L
Benzo[a]pyrene	0.1		ND	$\vdash \vdash$	4.9	ug/L	ND		2.5	ug/L
Benzofblfluoranthene	0.1		ND	$\vdash \vdash$	3.5	ug/L	ND	\Box	1.8	ug/L
Benzo(g,h,i)perviene	NA		ND	$\vdash \vdash$	4.6	ug/L	ND		2.4	ug/L
	IVA		ND		6.2	ug/L	ND		3.2	ug/L

TABLE 2B GROUND WATER ANALYTICAL RESULTS BASE NUTRIAL ACIDS HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

	MICONINGIA	CLIENT ID:	H14-MW-01-	-051606WG0	1	H14-MW-01	D-051606W/	301	
TestName	NJ Ground Water Quality Criteria	LAB ID:	The state of the s	527-001			3527-002	JU	
××××××××××××××××××××××××××××××××××××××	(ug/L)	COLLECT DATE:	5/16	5/2006		5/16/2006			
			Result F	la RL	Units		Fla RL	Unit	
Benzo[k]fluoranthene	0.5		ND	6.8	ug/L	ND I	3.5		
Bis(2-Chloroethoxy)methane	NA		ND	4.1	ug/L	ND ND	2.1	ug/l	
Bis(2-Chloroethyl)Ether	7		ND	9.3	ug/L	ND	4.8	ug/l	
Bis(2-Chloroisopropyl)ether	300		ND	4.9	ug/L	ND	2.5	ug/l	
Bis(2-Ethylhexyl)phthalate	3	5.0	ND	8,1	ug/L	ND ND		ug/L	
Butylbenzylphthalate	100		ND	5	ug/L	ND	4.2	ug/L	
Carbazole	NA		ND	3.5	ug/L	ND	2.6	ug/L	
Chrysene	5		ND	4.1	ug/L		1.8	ug/L	
Dibenzo[a,h]Anthracene	0.3		ND	5.4		ND ND	2.1	ug/L	
Dibenzofuran	NA NA		ND	34	ug/L	ND	2.8	ug/L	
Diethylphthalate	6000		ND	6.2	ug/L	ND	17	ug/L	
Dimethylphthalate	NA NA		ND		ug/L	ND	3.2	ug/L	
Di-n-butylphthalate	700		ND ND	3.8	ug/L	ND	2	ug/L	
DI-n-octylphthalate	100		ND	7	ug/L	ND	3.6	ug/L	
Fluoranthene	300		ND	4.1	ug/L	ND	2.1	ug/L	
Fluorene	300			3.4	ug/L	ND	1.7	ug/L	
Hexachlorobenzene	0.02		ND	3.2	ug/L	ND	1.7	ug/L	
Hexachlorobutadiene	1		ND	5.9	ug/L	ND	3	ug/L	
Hexachlorocyclopentadiene	40		ND	14	ug/L	ND	6.9	ug/L	
Hexachloroethane	7		ND	100	ug/L	ND	51	ug/L	
Indeno[1,2,3-cd]pyrene	0.2		ND	15	ug/L	ND	7.6	ug/L	
Isophorone	40		ND ND	3.9	ug/L	ND	2	ug/L	
Naphthalene			ND	3.1	ug/L	ND	1.6	ug/L	
Nitrobenzene	300		ND	9.6	ug/L	ND	4.9	ug/L	
	6		ND	5.1	ug/L	ND	2.6	ug/L	
N-Nitrosodimethylamine	0.8		ND	190	ug/L	ND	97	ug/L	
N-Nitroso-Di-N-Propylamine	10		ND	5.6	ug/L	ND	2.8	ug/L	
N-Nitrosodiphenylamine	10		ND	3.4	ug/L	ND	1.7	ug/L	
Pentachlorophenol	0.3		ND	17	ug/L	ND	8.5	ug/L	
Phenanthrene	NA NA		ND	5	ug/L	ND	2.5	ug/L	
Phenoi	2000		1600	32	ug/L	970	16	ug/L	
Pyrene	200		ND	3.2	ug/L	ND	1.6	ug/L	

NA - Not Applicable

ND - Non-Detect

J - Estimated Value

TABLE 2C GROUND WATER ANALYTICAL RESULTS METALS HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

	NJ Ground Water	CLIENT ID:	H14-MW-	01-0516	606WG01	4	H14-MW-	01D-051	1606WG0	1
TestName	Quality Criteria	LAB ID:	AC	23527-0	001			23527-		
	(ug/L)	COLLECT DATE:	5/16/2006			5/16/2006				
			Result	Flg	RL	Units	Result	Flg	RL	Units
Mercury	2		320		0.2	ug/L	2.3		0.2	ug/L
Antimony	66_		ND		7.5	ug/L	ND		7.5	ug/L
Arsenic	3	2	- 37		4	ug/L	25		4	ug/L
Barium	2000		730		25	ug/L	630		25	ug/L
Beryllium	1		ND		4	ug/L	ND	1	4	ug/L
Cadmium	4		3		2	ug/L	3.7		2	ug/L
Chromium	70		76		25	ug/L	52		25	ug/L
Copper	1300		250		25	ug/L	160		25	ug/L
Lead	5		200		5	ug/L	0.00		5	ug/L
Nickel	100		71		10	ug/L	51		10	ug/L
Selenium	40		ND		25	ug/L	ND	+ +	25	
Silver	40	-	ND		10	ug/L	ND		10	ug/L
Thallium	2		ND		5	ug/L	ND	1 1	5	ug/L
Zinc	2000		1000		25	ug/L	730	+ +	25	ug/L ug/L

NA - Not Applicable

ND - Non-Detect

J - Estimated Value

TABLE 2D
GROUND WATER ANALYTICAL RESULTS
POLYCHLORINATED BIPHENYL COMPOUNDS (PCB)
HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

	NJ Ground Water	CLIENT ID:	CLIENT ID: H14-MW-01-051606WG01						H14-MW-01D-051606WG01			
TestName	Quality Criteria	LAB ID:	B ID: AC23527-001					AC23527-002				
	(ug/L)	COLLECT DATE:	TE: 5/16/2006			20 4	5/16/2006					
2 2 2			Result	Flg	RL	Units	Result	Flg	RL	Units		
Aroclor-1016	0.5		ND		0.26	ug/L	ND	T	0.27	ug/L		
Aroclor-1221	0.5		ND		0.26	ug/L	ND		0.27			
Arodor-1232	0.5		ND	1 1	0.26	ug/L	ND	1	100000000000000000000000000000000000000	ug/L		
Aroclor-1242	0.5		(*)		0.26				0.27	ug/L		
Aroclor-1248	0.5			-		ug/L		<u> </u>	0.27	ug/L		
Aroclor-1254			ND	+	0.26	ug/L	ND		0.27	ug/L		
	0.5		ND		0.26	ug/L	ND		0.27	ug/L		
Aroclor-1260	0.5		ND		0.26	ug/L	ND		0.27	ug/L		

NA - Not Applicable

ND - Non-Detect

J - Estimated Value

TABLE 2E GROUND WATER ANALYTICAL RESULTS PESTICIDES

HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

	NJ Ground Water	CLIENT ID:	H14-MW-	01-05	1606WG01		H14-MW-0)1D-05	1606WG0	1
TestName	Quality Criteria	LAB ID:	AC	23527	-001		AC23527-002			
	(ug/L)	COLLECT DATE:	5	/16/20	06		5/16/2006			
			Result	Flg	RL	Units	Result	Flg	RL	Units
Aldrin	0.04	A 200	ND		0.011	ug/L	ND	ΤŤ	0.011	ug/L
Alpha-BHC	0.02		ND		0.011	ug/L	ND		0.011	ug/L
Beta-BHC	0.04		ND	\top	0.011	ug/L	ND	+ +	0.011	ug/L
Chlordane	0.5		ND		0.11	ug/L	ND	1	0.11	ug/L
Delta-BHC	NA		ND	1	0.011	ug/L	ND		0.011	ug/L
Dieldrin	0.03		ND	1 1	0.011	ug/L	ND	+	0.011	ug/L ug/L
Endosulfan I	40		ND	\top	0.011	ug/L	ND		0.011	ug/L
Endosulfan II	40		ND	1 1	0.011	ug/L	ND		0.011	
Endosulfan Sulfate	40		ND		0.011	ug/L	ND	+	0.011	ug/L
Endrin	2		ND	+	0.011	ug/L	ND ND	\vdash	0.011	ug/L
Endrin Aldehyde	NA .		ND	1	0.011	ug/L	ND	+-+	0.011	ug/L
Endrin Ketone	NA		ND		0.011	ug/L	ND		0.011	ug/L
Gamma-BHC	0.03		ND	† †	0.011	ug/L	ND		0.011	ug/L
Heptachlor	0.05		ND		0.011	ug/L	ND		0.011	ug/L
Heptachlor Epoxide	0.2		ND	\vdash	0.011	ug/L	ND ND		0.011	ug/L
Methoxychlor	40		ND	1	0.011	ug/L	ND ND			ug/L
P,P'-DDD	0.1		ND		0.011	ug/L	ND	\vdash	0.011	ug/L
P,P'-DDE	0.1		ND	\vdash	0.011	ug/L	ND	╁	0.011	ug/L
P,P'-DDT	0.1		ND	 	0.011	ug/L	ND	-	0.011	ug/L
Toxaphene	2	*	ND	 	0.26	ug/L	ND ND	-	0.011	ug/L ug/L

NA - Not Applicable

ND - Non-Detect

J - Estimated Value

TABLE 2F GROUND WATER ANALYTICAL RESULTS CYANIDE, TOTAL PHENOLICS AND TOTAL PETROLEUM HYDROCARBONS HANGAR 14 - NEWARK LIBERTY INTERNATIONAL AIRPORT

	Many of Social Professional Social So	CLIENT ID:	H14-MW	-01-051	606WG01		H14-MW-01D-051606WG01				
TestName	NJ Ground Water Quality	LAB ID:	7.02002/ 001		001	455.5	AC23527-002		002		
	Criteria (ug/L)	COLLECT DATE:				5/16/2		2006			
			Result	Flg	RL	Units	Result	Flg	RL	Unit	
Cyanide	100		0.046		0.01	mg/l	0.077	TI	0.01	mg/l	
Total Phenolics			4.4	4.4		mg/l	4.6	1 1	1.2	mg/l	
tal Petroleum Hydrocarbons	NA		1.6		1.1	mg/l	1.6	+	1.1	mg.	

NA - Not Applicable

ND - Non-Detect

J - Estimated Value

APPENDIX A

STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION

Certifies That

Having duly met the requirements of the Underground Storage Tank Certification Program N.J.S.A. 58:10A-24.1-8

Is hereby approved to perform the following services:

_	
	CATHODIC PROTECTION SPECIALIST
	CLOSURE
	INSTALLATION-ENTIRE UST SYSTEM
	SUBSURFACE EVALUATION
	TANK TESTING

US00089 CERTIFICATION NUMBER

03/31/2007 EXPIRATION DATE

ASSISTANT COMMISSIONER, DEPARTMENT OF ENVIRONMENTAL PROTECTION

DEPARTMENT OF

ENVIRONMENTAL PROTECTION

ENVIRONMENTAL PROTECTION

CERTIFICES THE GOOD STAIN OF

CENTRAL SANTAGE COOL OF

CENTRAL PROTECTION

NEW JERSEY

NEW JERSEY

NEW JERSEY

NEW JERSEY

NEW JERSEY

AS A LICENSED:

SUBSURFACE

Expires OF/30/07 Document#: 042493250

APPENDIX B

MONITORING WELL CERTIFICATION - 'FORM B'- LOCATION CERTIFICATION

Name of Owner: The Port Authority of NY & NJ.

Name of Facility: NEWARK-LIBERTY INTERNATIONAL AIRPORT.

Location: HANGAR 14, UNITED AIRLINES.

Case Number(s): N/A (UST#, ISRA #, Incident #, or EPA#)

Land Surveyor's Certification Well Permit Number 2600078854

(This number must be permanently affixed to the well casing.)
Owners Well Number (As shown on application or plans): H14 MW1
Geographic Coordinate NAD 83 (To nearest 1/10 of second):
Longitude: West Latitude: 74-10-35.8 North 40-42-16.6

New Jersey State Plane Coordinates NAD 83 to nearest 10 feet: North 681752 East 581778

Elevation of Top of Inner Casing (cap off) at Reference mark (nearest 0.01'): 11.37 (NGVD'29 FT.)

Source of elevation datum (benchmark, number/description and elevation/datum. If An on-site datum is used, identify here, assume datum of 100°, and give Approximated actual elevation.

PA BM Z-12 ELEV. 12.08 NGVD29, NEWARK AIRPORT Significant observations and notes:

Authentication

I certify under penalty of law that I have personally examined and am familiar With the information submitted in this document and all attachments and that, Based on my inquiry of those individuals immediately responsible for obtaining The information, I believe the submitted information is true, accurate and Complete. I am aware that there are significant penalties for submitting false Information including the possibility of fine and imprisonment.

Seal

Professional Land Surveyor's Signature

Date JUNE 22, 2006.

Professional Land Surveyor's Name and License Number (Print) William J. Kane GS 30405.

Professional Land Surveyor's Address and Phone Number
(BUSINESS) 241 Erie Street Jersey City NJ 07310-1397. 201 595-4842

APPENDIX C

THE PORT AUTHORITY OFNEW YORK AND NEW JERSEY

CENTRAL SURVEY GROUP 241 ERIE STREET (ROOM 236) JERSEY CITY, NJ \$7310. TEL. (201) 595-4842

BORE HOLE & MONITOR WELL LOCATIONS

FACILITY: NEWARK AIRPORT

CHARGE CODE: CA4 997,506

LOCATION: HANGER 14

DATE: 5/2/2006

NOTE KEEPER: CAAMANO

INSTRUMENT: DUNKERLEY

COMPUTER: CAAMANO

CHECKER: YATES

RIZONTAL DATUM NAD 27

.

VERTICAL DATUM: NGVD + 297.847

JOB No.: 06.171 LE: ELEVATIONS GE: GROUND LATITUDE LONGITUDE TOP OF PIPE NORTH EAST RIM ELEV. BH/MW No. 681972.78 2135759.59 309.08 309.079 308,723 H14-MW1 309.24 2135755.53 681974.11 SB-1 2135753.65 309.18 SB-2 681967.68 681980.72 2135755.72 310.13 SB-3 2135751.63 SB-4 681975.09 309.45 H14 BH MW-1 NOT FOUND (05-31-06 308.98 681967.31 HIYBHMW-I 2135759.23 PAGE No. OF

PA NY NJ

306 10:50

JUL-11-2006

THE PORT AUTHORITY OF MY & MU

Engineering Department Construction Division Materials Engineering Section

					BORING REPORT		, -
PROJECT							SHEET OF
152	28- H	mgan 14			NAME OF CONTRACTOR	BORING NO.	SURFACE ELEV.
I I A A A TIALI		1)			1 ADT	H14-5B.1	
l ao la	id out	by H.M. 1	na Do	ruld	(Center of UST)	CONTRACT NO. 426-06-007	DATE 4/26/26
SPOON	231	CASING !	SIZE HOL	ETYPE		OUND WATER LEVEL	4/24/06
2 .	"O.D. 6/	8 I.D. OLICANI HAMMER	-4"	1_	Date Time Depti		marks
HAMMER 140		HAMMER			11-11 1115		
DRILLER			# FALL		4/26/06 10:15A 11.0) In S#5	
	G. 2	tringham					
INSPECTOR	1	0					
	1.1	lyan					
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.	OVIN EF DE	SCRIPTION AND REMARK	s
Bullet	0	520113/6	COAD	NO.	LINE LOCA	TES CHANGE OF PROFILE	,
	 	 			AS;	PHALT	
Head	 _	<u> </u>			<i>;</i>		٠
•		Hand	Full		171- BOD-ES. 1+5	1+ ()	5.9.
		augen	Ric.		Fill-By C-F Sand to S	ill, some Gavel,	4 Cobbles
	 	- Source	100.	<u></u>			
	>	 		2	Sang w/ to Metal,	to Wood.	, , , , , , , , , , , , , , , , , , , ,
		V	V		•		· — — — —
anzero		6-7			Thise Fill - By C-F San	D 0=++0.0	<u> </u>
\		11-11	19"	3	C. O.	e, und borel, 1	1 Oloco to
					400	•	
	— . —	10-13		4	Fill- By M-F Sand	to Silt to Go	vel
	-10	20-20	13'1	_1			
		8-8			Some with Wood		
		12-21	15''	5 1		<u> </u>	
			. 1.	$\overrightarrow{-}$			
		12-16	17"	6	Same (Fuel or	loz)	
		19-21	3 1	$Y \mid$	Fell - Gray M-F San	I to Silt to Co	wel. 14.0'
						,	·04. 17.0
				ŀ		7	
				-		follow of Bo	mc
				-)
				L			
	_		ĺ				
				F			
	•			-	_ <u> </u>		
	- +			2	A		
					Llove: Jample #	b & a Tillia	H Was
	_	ł			and GOI atten	marcic	and will
					1 D	the were revenied	m) 11/2 5
				-	renaistanded	<u> </u>	
						5 ^{11 8} 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	NOTES:	1 - Length recov	ered; 0" -	- Loss of	Sample, T — Trap used	\$ \$ 1. 4. 4. A. 4. 2. A. 4. A.	# \$ 18 % \$ 3 \$ 4 \$ 25 * \$ 1, 2 }
		3 - Log depth of	change ir	olor of	ER = open end rod; V = vane wash water, loss of water, artesian wa	er sand heave in sector of	to the same of the
						or, cano neave in casing, e	ю.

THE PORTAUTHORITY OF MY & MU

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS

	7 1 A	77	· · · · · · · · · · · · · · · · · · ·		·		Sheet Cof >
PROJECT:	ew k.	Hangar	14				
1	H14-SB-	1			DATE:	4/26/0	6
FIELD READ	DING BY: 7	-16ga-			PID Model:	Mon Ras	
TIME	SAMPLE No.	IN-SITU Split Spoon Reading	HEAD Space Reading	BREATHING Zone Reading		REMARKS	
HM			4.8	0.0	·.		
	2		12.8	6.0			
	3		12.1	0.0			
	4		13.2	0.0			
	5		27.0	0.0			
	6		725	0.0	Juel	odor	
V	7		4.1	0.0	<u>'</u>		
			**				
7				<u></u>			
		· ·					·
	-						
<u> </u>					·		

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION CHAIN OF CUSTODY RECORD

Sheet 3 of 3Hangar PROJECT: LOCATION: Oo laid out MacDonald DATE: 06 BORING NO#14-5B-TOTAL No. OF SAMPLES: SIGNATURE OF ALL PRESENT AT SAMPLING DATE 4/26 /06 RELINQUISHED RECEIVED BY (SIGN) TIME BY (SIGN) RELINQUISHED DATE RECEIVED BY (SIGN) TIME BY. (SIGN) RELINQUISHED DATE RECEIVED BY (SIGN) TIME BY LAB REMARKS:

THE PORT AUTHORITY OF MY & NU

Engineering Department Construction Division Materials Engineering Section

				BORING	REPOR	T		,	7
PROJECT					·			SHEET OF	$\overline{}$
EUR- HO	engan 14			NAME OF CON		E	ORING NO.	SURFACE ELEV.	_
LOCATION	ngun 17			AD	1		H14-SB-Z		
as laid out	- by HMN	Jac Dor	ald/	So. end of	UST	C	ONTRACT NO. 426-06-007	DATE 4/26/	7
SPOON 23/	CASING S	IZE HOL	E TYPE	0		GROU	ND WATER LEVEL	11 -1	9 1
HAMMER	3 1.D. Megers	-Y	<u> </u>	Date	Time	Depth		marks	
140 # FALL	Z HAMMER			1 1		1, 21			
DRILLER	Stringham	# FALL		4/26/6	1525 P	11.0	In St		
NIA TEATAN								<u> </u>	
CASING	Pyan	RE- 1	SAMP.2		20.				
BLOWS/FT. DEPTH	BLOWS/6"	COV'D	NO.		*SAI	NE LOCATES	RIPTION AND REMARK CHANGE OF PROFILE	S	٠,
Head				<u> </u>	<u> </u>	ASP	HALT		
-	Hand	hell		1:10-	0 0 0	0 1 1		2.0	o <u>'</u>
	augus	le	l	Silt, t	121 C-F	Sund, L	ttle Gavel, to	Cobbles, to	
		1		Solar	A Parisin	uel O	7-7-		
	V	V	2		·	<u>~~</u> _0	<u> </u>		\dashv
	7-9		3	Sam	· w/ t	Glass	to Wood.		
	11-18	20"			,	•			
-\ -	87/6"		4	(Robs bruning	pluced 1	Rubber in o	(on)		\dashv
10	5-4	14"	5	fill-Bi	m-F-Sad	th Su	Lit G, to full	er Metal Glass	,
_	2-4		9	Muse full-	Cinders	, Glass	, little Sand	(m.F) 11,0	0
			-						1
			-			_k	atton of Bo		_
						— — I	mon of De	ring -	-
									-
									-
									7
			-						
-				 .				~ 	
									-
			5	1+		Trime /		0	_
			1	000000000000000000000000000000000000000	mari-	<u> </u>	1 PID & then di	y other	-
			, 4	unper un	THE MECALE	eaned w	FIU & Chem de	acended.	-
NOTES									1

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used 2 — U = undisturbed; A = auger; OER = open end rod; V = vane 3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS

Sheet 2 of 3.

PROJECT:	ewf-	Hangar 1	4		DATE: 4/26/06
BORING No.		- //			PID Model: Mini Rae
RELD READ	INGS BY:	T. Kyan			
	SAMPLE No.	IN-SITU Split Spoon Reading	HEAD- Space Reading	BREATHING Zone Reading	REMARKS
TIME	1		2.9	0.0	
Am			63.5		Luel rd or
V	2				11111
PM	3		29.5		Rubber Plug
	4				/ 0 0 =
	5	,	29.2	0.6	feel order
1	6		116	0.0	
<u>·</u>					
· ` · · · · · · · · · ·					
		·			
			· · · · · · · · · · · · · · · · · · ·		
				, , , , , , , , , , , , , , , , , , ,	
·					
			<u> </u>		
		· · · · · · · · · · · · · · · · · · ·			
				·	
		<u> </u>			
ę	·				
				Į.	

ENGINEERING DEPARTMENT
MATERIALS ENGINEERING DIVISION
CHAIN OF CUSTODY RECORD

		. ·	Sheet 3 of 3
PROJECT: EWR-Hangan	14		
LOCATION: as laid out by HM	Mac Donald	DATE: 4/26/	56
BORING No: 414-SB.2	TOTAL No	OF SAMPLES:	
SIGNATURE OF ALL	0		
PRESENT AT SAMPLING	36-		•
RELINQUISHED /	DATE 4/7	26/09 RECEIVED	
BY (SIGN)		7	
111111111111111111111111111111111111111	TIME	BY (SIGN)	
RELINQUISHED	DATE	RECEIVED	,
BY (SIGN)	TIME	BY (SIGN)	•
RELINQUISHED	DATE	RECEIVED	
BY (SIGN)	TIME	BY LAB	
	10		
· .			
7	1 = 0 14		
ample # 6 = Metl 1	Vial# 266-	75	•
•			-
	<u> </u>		
	-		
			1

THE PORT AUTHORITY OF MYS MJ

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

										SHEET (OF
PROJECT	7W 2-1	L - 1 14			N	AME OF CONT			BORING NO.	SURFACE ELEV.
LOCATION LOCATION						ADT H14-SB-3				
asla	id out	Lay H. A		Donald	d_{I}	North	END		CONTRACT NO. 424-067	DATE 4 /27/06
SPOON	> 3/	8 ml.D. augers -	SIZE HOLI	E TYPE	7			GRO	UND WATER LEVEL	
HAMMER	0.D. 2 /		4	<u>L</u>		Date	Time	Depth	Re	emarks
	#FALL 3	HAMMER	# FALL			4/27/06	10:20A	10.5	In S#	T
DRILLER			# FALL			(7 - 7/ - 4	70 71	7 0.1	42	4
	G. 31	tingham				-				
INSPECTOR	-	01								
O A CINIC	 	Kyan	7	T						
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.					CRIPTION AND REMARK ES CHANGE OF PROFIL	
Bullit	0				1				PHACT	
Head	_						 			
	 	Hand	full	 	M	731-0	4 6 8		1 1 + 0	2.0
	 		fuer	1	114	K-tur 13	1 - 6	and so	me Gravel, to Cor	roles, & Wood
	 	agen)		\vdash				<u>^</u> _^	<u> </u>
	< -		-/	2		Sanie 6	u/ t, K	ubber	. (Tuel od o	L)
		I V	V	<u></u>				·		
augers		4-4		5	,	fill-B	Gran M	1-F Sa	J. t. Silt, t	Gravel
7		7-10	20"	3		$\overline{2}$	e. Thel	020	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		19-14				Same	w/ 14"	Stri.	of wood (fe	ght ful odn)
		14-12	23"	4			<u> </u>	<u> </u>	0 008 . (H	12 000
	- 10 -	8-10				Sw	21.0	<u> </u>		
		12-15	18"	5					~ <u> </u>	
V	-	9 7	10							
		1-+	- 1	6		_92	mo af	01 <u>SCla</u>	you try of sy	7.00-1
		6-6	17"						, , ,	14-01
	-1<					- — —				1
	′									
				[R. The of	Right
				ľ					Botton of	
				ŀ						· — — — —
				ļ-		·			· — — — ·	
	• •			-		· ——			· — — — — — — — — — — — — — — — — — — —	
						d				:
					W	20:	ample	#6	13-14 1300	dans
					À	DO HI	Co Am		13-14 was	DE di
			•	<u> </u>	SZ M	- Ro A	- Act of the Party of	N. CONC. STORY	Charles and and holy the strain of the same	*GZ * C*(,**
				-		WYGAGE "				
	-									

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used 2 — U = undisturbed; A = auger; OER = open end rod; V = vane 3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS

Sheet 2 of 3

PROJECT:	EWR-1	Jangar 14 1. Myan			Date: 4/27/06
BORING No.	. H14-SB	3			DATE: 4/27/06 PID Model: Mini Rap
HELD READ	INGS BY:	1.19a			PID Model. 750
	SAMPLE	IN-STTU Split Spoon	HEAD- Space	BREATHING Zone	REMARKS
TIME	No.	Reading	Reading	Reading	
Am	1.		12,-1	0-0	1 1 1
1	. 2		42,6	0.0	fuel odos
	3		16.0	0.0	Slight " " " fuel oder
	4		80.7	0.0	" fuel oder
1	- 5	,	4.1	0.0	
	10		0.4	0.0	
	·			-	
;					
		•			
			7 1		
· 					
			<u> </u>		
				·	
	· .				
	Ì				

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION CHAIN OF CUSTODY RECORD

PROJECT: EUR-Hangus	1 \(\)		Sheet 3 of 5
LOCATION: To laid out by H.	n mach 10	two	
BORING No: 414-58.3			-/06
	TOTAL No.	OF SAMPLES:	9909999
SIGNATURE OF ALL	0		
PRESENT AT SAMPLING	T.Kga		
RELINQUISHED	DATE 4/2	7/06 RECEIVED	
BY (SIGN)	TIME	BY (SIGN)	•
RELINQUISHED			######################################
BY (SIGN)	DATE TIME	RECEIVED	
ELINOUS		BY (SIGN)	
RELINQUISHED	DATE	RECEIVED	
Y. (SIGN)	TIME	BY LAB	
	, ()		
\checkmark	·		
Sample # 6 = Meth	Vial # 268	200	
surpe Q - THUI	Mal # Lle?	32+	
			-

THE PORT AUTHORITY OF MY & MU

Engineering Department Construction Division Materials Engineering Section

					BORING	REPOR	T		, ,
PROJECT	· · · · · · · · · · · · · · · · · · ·							·	SHEET OF
L. K	720-	Hangan 14	.1		NAME OF CONT			BORING NO.	SURFACE ELEV.
LOCATION		10 angan 1	7		1 A	TA	ľ	414-SR.4	
LOCATION	0 -	# 11 mm aldes		/ , ,			C	HI4-SB.4	DATE 1
SPOON	9	H.M. Mar	SIZE HOL	/ <i>W.</i> E TYPE	ect side	· · · · · · · · · · · · · · · · · · ·		426-06-007	4/27/06
3 "	n 23	18 "I.D. augers	-4"	1			GROU	ND WATER LEVEL	
HAMMER	U.D	HAMMER	`	<u>+</u>	Date	Time	Depth	Re	marks
11/2	# FALL	30 " TAMMER			1 11 -1.			1.1.	
DDILLED		 	# FALL	*	427/06			Hore Encou	Tered.
(2. 20	ingham							C.
INSPECTOR		Ryan							
CASING	ł	SPOON	RE- 1	SAMP.	2	30 41	ADI E DECO		
BLOWS/FT.	DEPTH	BLOWS/6"	COA,D	NO.		LIN	VE LOCATES	RIPTION AND REMARK CHANGE OF PROFILE	\$ [
Bullit							ASPHAL		
Head							1 -1 11 11		
		Hand	full		T. O. R. 1	1-60	0	0 110-11	2.0'
		auger	Rec		True 181	- 1 dans	X some	Gravel, to Sitt	, to Cohbles.
	<u> </u>	auger	100						-
	- 5	◄ ,	 	2	Some				•
			V				4	•	
aligus		9-7		ים	Sam	ا لا لا	nel od)	
V		1.9-15	15"	3					
		29-21	7.11	4	San				
		14-11	20"	\ \ \			W.CC	of Brief Class e	9.8'
	· 10 ·				The full	- Chouse	111-60,	of Bruch, wears e	(c. 10.0°
		 		-					
]					
				Ĺ				Bottanok	Boring
			1	-					
L	. /								
	· 15 · •								
		-		-					
				_					
				[
	_								
				<u>-</u> -	77		# _ /		
				-	ALL I	temple	5	9'-10') was 1	aved all
	· -	-		_	other son	iple w	ere ser	rend w/ PiD	then dis-
	·				Carded.	,	_	,	
									
	ار								

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS

Sheet 2 of 3

PROJECT:	EWR-	Hangan	14		James 4/27/06
BORING No		-SB-41			PID Model: Mini Rap
HELD READ	INGS BY:	T.19, am			PID Mode. 7 37-1 June
	SAMPLE	IN-SITU Split Spoon	HEAD- Space	BREATHING Zone Reading	REMARKS
TIME	No.	Reading	Reading		
Am	1.		28.3	0.0	
	2		35,3	00	1 1 1
	3		120	0.0	quel od o
/	4		202.		8'-9' fuel ods
V	5	,	292		9'-10' " Flam
		·			
				-	
-					
		•			

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION CHAIN OF CUSTODY RECORD

Sheet 3 of 3 PROJECT: LOCATION: lo lai H.M. Mac Donald Was siDE DATE: **BORING No:** TOTAL No. OF SAMPLES: SIGNATURE OF ALL PRESENT AT SAMPLING RELINQUISHED DATE 4/27/06 RECEIVED BY (SIGN) TIME BY (SIGN) RELINQUISHED DATE RECEIVED BY (SIGN) TIME BY (SIGN) RELINQUISHED DATE RECEIVED BY (SIGN) TIME BY LAB Meth vial X REMARKS:

THE PORT AUTHORITY OF MY & MJ

Engineering Department Construction Division Materials Engineering Section

					BORING	911	4		/
PROJECT		·			NAME OF CON	TRACTOR		20000 112	SHEET (OF
EWP	- Han	san 14				DT		HIY-BH-MWI	SURFACE ELEV.
LOCATION	1. + 1	1 A 40G	-> 1/)	······································			ONTRACT NO.	DATE /
(b) lai SPOON	id out b	y H.M. Ma		/ = =\(\sigma\)				426-06-007	10/55/4
	O.D.	"I.D.	SIZE HOLI	TYPE	Dete	71		ND WATER LEVEL	
HAMMER	0.0,	HAMMER			Date	Time	Depth	Re	marks
	# FALL		# FALL						
DRILLER	C.D.	Stringham							
NSPECTOR	o con	2 Sunghan							
•		Kypin		.					
CASING	1	SPOON	RE- 1	SAMP.2		³SA	MPLE DESCI	RIPTION AND REMARK	S
LOWS/FT.	DEBTH-	BLOWS/6"	COV'D	NO.	<u> </u>	LII	NE LOCATES	CHANGE OF PROFILI	
Bullit	_						ASP	PHACT	
read	_				•		 ,	· — —	Z.3
-		Hand	Juli		7:00 R.	CES	. 0 12	(Grovel to Silt	1 CLAAN
		Ouren	he		HOT IN	C-1 -00	1/500	(Giover 4 Siry	tylobely
	<u> </u>	- Company	V	Z	— — SOV		· —		
	> 5 <								
	<u> </u>								
						- 	- 		- — — — ,
					11:+11	テモ		727	130
			 	H	ANTOR	rucus	2	Bottomo	1
				-	_ Dee	1414-1	mw-)		·
							<u> </u>		
			[]					
									
		· · · · · · · · · · · · · · · · · · ·				·			
				-		·			
				<u> </u>				<u> </u>	
		~							
		·							
									
	- +			- -					
									
									
				ļ .	1	1- 10	10		
	- +			<u> </u>	Noto:	HU. NON	1 the A	aves	
	_								
				 					
			1	ı					

THE PORT AUTHORITY OF MY & MU

Engineering Department Construction Division Materials Engineering Section

				BORING REPOR	RT .		
PROJECT		·		NAME OF CONTRACTOR			SHEET OF
EWR- Han	san 14			ANT	BORING	ano. H-MW-1	SURFACE ELEV.
as laid out	by HM. M	AC L.	0/+	7/60100		ACT NO.	DATE /
SPOON 7-3//	CASING	SIZE HOL	E TYPE	7' S.E of SB.1)		-06-007	4/27/0
3 *0.D. 23/8	"I.D. Ouser.	,-4' A	Monitor	Date Time	GROUND W	ATER LEVEL	
HAMMER	HAMMER		 -			1	emarks
DRILLER		# FALL		4/27/06 132 P	9.5'	m S#4	<i>[</i>
G. St	tingham						
NSPECTOR T./							· · · · · · · · · · · · · · · · · · ·
CASING	SPOON	RE-	SAMP.2				
LOWS/FT. DEPTH	BLOWS/6"	COV.D	NO.	1 0/	MPLE DESCRIPTIONE LOCATES CHA	N AND REMARK	S
_ tillur		_ [
Head			1		<u>Азен</u>	<u> </u>	
	Hand	Tull		7:10- 6 3-55	. 0	A + 65	7.
	ancen	fuc		TW- AC-FS	and soul	over his	It, to Cobbles
	Concer	 	,				
	 	1.	7	_ cane w/ l	ttle Colle	<u></u>	
_	10 7	V					
users	19-21		3	_ Jane (uel odos)		· —— -— — —
	22-23	21"					
	32-20		,,]	- Jans (und adon)		
10	21-32	22"	4				
	24-24			Same			
	33-36	2"	5				
	3-8			TIMER MCG			
	13-13	20"	6	Till-Bn M-FS	and to be	4 Granel	h Shells.
+	5-7	- 20	-				
15		. (1)	7 -	_ Some W/ t	org clay,	a tip of spoon	m.
	5.4	14"		, <u>, , , , , , , , , , , , , , , , , , </u>	- 0	0 0 V	16.0
- - -	5-4		0	By Peat, some ore	Class		76.0
	5-6	20"	8				
20					— — — R	H= 10	
				M.F. Town		ottom of B	oring -
			-4	The A Samba	6/13-14 WOO	gaved ill	other
			-	sample were so	record of f	DEHL	was ded.
							
			-				
						··· ··· ··· ·	
MATEC	1 — Length recov	/ered: 0" =	- I nee of	Sample, T — Trap used			
NOTES.				Sample, I — Trap used ER = open end rod; V = va wash water, loss of water, art			

THEPUTTUTRONGYOFANAMA

Engineering Department

Materials Engineering Division Well Installation Report sheet 2 of 4 PROJECT: 426-06-007 CONTRACT NO. LOCATION: Rolaid out by H. M. Mac Donald CONTRACTOR ADT INSPECTOR: NOTE: WATER LEVEL READINGS FROM TOP OF PVC) 4/28/06 WATER LEVEL BEFORE: 9.61 WATER LEVEL AFTER: TAKEN MINUTES AFTER DEVELOPMENT 9" dia, Manhole cover " dia. PVC pipe w/locking cap Top of surface L1 & cement grout 3,0 L2 Top of bentonite seal 4.0' Top of well gravel filter openings L3 .020" Bottom of well Cap Bottom of boring

THE PORTAUTHORITY OF MY & MU

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS

Sheet 3 of 4 PROJECT: BORING No. DATE: FIELD READING BY: PID Model: IN-SITU HEAD BREATHING SAMPLE Split Spoon Space Zone REMARKS TIME No. Reading Reading Reading PM 8,2 0.0 11 67.2 0.0 11 0.0 u 80.1 0-0 11 2.3 80 4/23/ Am 0 0.0 0.0 ors ofon 0.0

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION CHAIN OF CUSTODY RECORD

PROJECT: EWR- Hargan 14 LOCATION: Blaid out by HM M& Bond DATE: 4/28/06 BORING NO: H14-MW-1 TOTAL NO. OF SAMPLES: SIGNATURE OF ALL PRESENT AT SAMPLING RELINQUISHED BY (SIGN) TIME BY (SIGN) TIME BY (SIGN) RELINQUISHED DATE RECEIVED BY (SIGN) TIME BY (SIGN) RELINQUISHED DATE RECEIVED BY (SIGN) TIME BY LAB EMARKS: Sample h 6 or jan 4 Muth Vial K Sample # - 6 = Muth Vial # 26832		Sheet tof 4
BORING NO: #14-MW-1 TOTAL NO. OF SAMPLES: SIGNATURE OF ALL PRESENT AT SAMPLING RELINQUISHED BY (SIGN) TIME BY (SIGN) RELINQUISHED DATE RECEIVED SY (SIGN) TIME BY (SIGN) RELINQUISHED DATE RECEIVED TIME BY (SIGN) RELINQUISHED DATE RECEIVED TIME BY LAB EMARKS: Janple M - 6 A jan C Meth Vuol X		-
SIGNATURE OF ALL PRESENT AT SAMPLING RELINQUISHED BY (SIGN) RELINQUISHED DATE RECEIVED BY (SIGN) TIME BY (SIGN) RELINQUISHED DATE RECEIVED BY (SIGN) TIME BY LAB EMARKS: Sample M 1-16 of an 4 Math Visal X		106
PRESENT AT SAMPLING RELINQUISHED BY (SIGN) TIME BY (SIGN) RELINQUISHED DATE RECEIVED BY (SIGN) TIME BY LAB EMARKS: Sample M 1-16 of Jan 4 Mull Vual X	BORING No: H14-MW-1 TOTAL No. OF SAMPLES:	
PRESENT AT SAMPLING RELINQUISHED BY (SIGN) TIME BY (SIGN) RELINQUISHED DATE RECEIVED BY (SIGN) TIME BY LAB EMARKS: Sample m - 6 or jan q Mult Viral to	SIGNATURE OF ALL	
RELINQUISHED DATE 4/28/06 RECEIVED BY (SIGN) TIME BY (SIGN) PRELINQUISHED DATE RECEIVED BY (SIGN) TIME BY (SIGN) RELINQUISHED DATE RECEIVED BY (SIGN) TIME BY (SIGN) FEMARKS: Sample M 1-16 of an c Mult Vial t	_ //	
BY (SIGN) TIME BY (SIGN) RELINQUISHED DATE RECEIVED SY (SIGN) TIME BY (SIGN) TIME BY (SIGN) TIME BY (SIGN) RELINQUISHED DATE RECEIVED TY (SIGN) TIME BY LAB EMARKS: Sample M 1-16 of jan 4 Meth Viral X		
RELINQUISHED DATE RECEIVED SY (SIGN) TIME BY (SIGN) RELINQUISHED DATE RECEIVED TY (SIGN) TIME BY LAB EMARKS: / Sample h - 6 or jan 4 Mull Viral K	RELINQUISHED DATE 4/28/06 RECEIVED	
TIME BY (SIGN) RELINQUISHED DATE RECEIVED TY (SIGN) TIME BY LAB EMARKS: / Jan ply h 1-16 or jan 5 Meth Viral X	BY (SIGN) TIME BY (SIGN)	•
TIME BY (SIGN) RELINQUISHED DATE RECEIVED YY (SIGN) TIME BY LAB EMARKS: / Sangle h 1-16 of jan 4 Meth Viral X	RELINQUISHED DATE RECEIVED	5381-5386668888888888888 88888888
DATE RECEIVED IY (SIGN) TIME BY LAB EMARKS: / Samply h 1-16 or jan & 1 Meth Vual X	RY (SIGN)	
EMARKS: / Samply h 1-16 or jan q Meth Vual X	ELINOUISHED	
EMARKS: / Sample m 1-16 or jan & 1 Meth Vial X	Y (SIGN)	
·	Samply # - 6 = Meth Vial # 26832	

APPENDIX D

GROUNDWATER PURGE DATA SHEET

Hampton-Clarke, Inc. 175 Route 46 West, Fairfield, NJ 07004

NJDEP # 14622

NYDOH # 11408

EPA # NJ00386

Project Name: PANYNJ - E	WR-Hangar	14	Proiec	t Number:	: 1010-00	1			•
Date: 5/16/2006				degrees	Fahrenhe	- it			
Field Personnel: Brian Swoffo	rd / Christin	e Olsen	_					2-	
Monitoring Well Number: H 14 - MW -	1		_ Permi	t Number:					
PID Reading:		Free	Product T	hickness:				<u>.</u>	
LOW FLOW	-				Dlamate/o		1	<u> </u>	
LOW-FLOW Well Diameter:		inches			Gasing	Gillinion			=
Total Depth of Well:	·		n top of c		2"	0.163			
Depth to Water: Linear feet of Water:			n top of ca	asing)	4"	0.653			
Gallons/Linear Foot:		feet gal/ft			6"	1.469			
Volume of Water Column:	1 15567	Gallons			8" 10"	2.611 4.08			
Minimum Purge Volume:			(3 volume	s)	12"	5.875			
	Name of the Control o		·	an england the to have					
Groundwater/Parameters	14018100	ीं	209	976	6111	១វវា	(3th.	<u></u> Alh	i Regi Similin
Time	9:19	9:24	9:28	9:39	9:44	9:48	9:51		
(i.08) Papihiowhier(ii)	8.83	9.38	9.92	9.95	10.38	10.47	10.83		
ପ୍ରେମ	Clear	Clear	Clear	Clear	Clear	Clear	Clear		
i elity	Good	Good	Good	Good	Good	Good	Good	-	
Sumulai(va/Yolume(bals)		1.00	1.25	2.00	2.25	2.50	- 2.75		
HG 0400-	6.18	6.39	6.57	6.58	6.67	6.80	6.83		
± 3%	0.203	0.234	0.240	0.268	0.266	0.269	0.272		
e 10%	889.0	614.0	512.0	839.0	374.0	213.0	193.0		
	15.26	13.10	11.94	10.67	10.43	10.31	10.28		
(e) endisterimen	17.40	18.37	18.25	18.92	18.84	18.89	18.88		
s Selliniauza	0.10	0.11	0.12	0.12	0.13	0.13	0.14		
TDS	1.41	1.50	1.54	1.59	1.73	1.72	1.76		
(Opp) (mv)	-74	-92	-123	-174	-184	-187	-189		· · · · ·
Purge Start Time: 9:19			Purge E	nd Time:	9:51			*	
Total Purge Volume: 2.75	gallons	,	Total Pui	ge Time:	32			min	1
Purge Method: Grundfos Pun				rge Rate:				gal/min	
Sample Start Time: 9:51			Sample =	nd Time.	10.20	·			
Sampling Method: Bailer	* *		sample ⊑ tal Sampli	nd Time: na Time:	10:32	<u> </u>		min	ı
	V V				71			11111	
bservations:	4.						:		
	•								

Sampling Technician: Brian Swofford Printed Name

Signature

APPENDIX E